
Learning Inverse Dynamics: a Comparison

Duy Nguyen-Tuong, Jan Peters, Matthias Seeger, Bernhard Schölkopf

Max Planck Institute for Biological Cybernetics
Spemannstraße 38, 72076 Tübingen - Germany

Abstract. While it is well-known that model can enhance the control
performance in terms of precision or energy efficiency, the practical appli-
cation has often been limited by the complexities of manually obtaining
sufficiently accurate models. In the past, learning has proven a viable al-
ternative to using a combination of rigid-body dynamics and handcrafted
approximations of nonlinearities. However, a major open question is what
nonparametric learning method is suited best for learning dynamics? Tra-
ditionally, locally weighted projection regression (LWPR), has been the
standard method as it is capable of online, real-time learning for very com-
plex robots. However, while LWPR has had significant impact on learning
in robotics, alternative nonparametric regression methods such as support
vector regression (SVR) and Gaussian processes regression (GPR) offer
interesting alternatives with fewer open parameters and potentially higher
accuracy. In this paper, we evaluate these three alternatives for model
learning. Our comparison consists out of the evaluation of learning qual-
ity for each regression method using original data from SARCOS robot
arm, as well as the robot tracking performance employing learned models.
The results show that GPR and SVR achieve a superior learning precision
and can be applied for real-time control obtaining higher accuracy. How-
ever, for the online learning LWPR presents the better method due to its
lower computational requirements.

1 Introduction

Model-based robot control, e.g., feedforward nonlinear control [1], exhibits many
advantages over traditional PID-control such as potentially higher tracking ac-
curacy, lower feedback gains, lower energy consumption etc. Within the context
of automatic robot control, this approach can be considered as an inverse prob-
lem, where the plant model, e.g, the dynamics model of a robot described by
rigid-body formulation, is used to predict the joint torques given the desired
trajectory (i.e., the joint positions, velocities, and accelerations), see, e.g., [1].
However, for many robot systems a sufficiently accurate plant model is hard to
achieve using the pure rigid-body formulation due to unmodeled nonlinearities
such as friction or actuator nonlinearities [2]. In such cases, the imprecise model
can lead to large tracking errors which can only be avoided using high-gain con-
trol or more accurate models. As high-gain control would turn the robot into a
danger for its environment, the latter is the preferable option. For this, one im-
portant alternative is the inference of inverse models from measured data using
regression techniques.

While this goal has been considered in the past [3, 4], given recent progress
in regression techniques and increased computing power for online computation,

13



Fig. 1: Anthropomor-
phic SARCOS master
robot arm.

it is time that we reevaluate this issue using state-of-
the-art methods. In this paper, we compare three differ-
ent nonparametric regression methods for learning the
dynamics model, i.e., the locally weighted projection
regression (LWPR) [5], the full Gaussian processes re-
gression (GPR) [6] and the ν-support vector regression
(ν-SVR) [7]. The approximation quality is evaluated us-
ing (i) simulation data and (ii) real data taken from a
7 degree-of-freedom (DoF) SARCOS master robot arm,
as shown in Figure 1. Furthermore, we will examine
the tracking performances of the robot using the learned
models in the setting of feedforward nonlinear control [1].

Our main focus during these evaluations is to an-
swer two questions: a) which of the presented methods

is suited best for our problem domain, and b) whether policies learned by support
vector machines and Gaussian process can work in a real-time control scenario.

In the following, we will describe the role of inverse dynamics in nonlinear,
feedforward robot control and, subsequently, the regression algorithms used for
model approximation. Afterwards, we will discuss the results of model learning
and how these can be used for control. Finally, we will show the performance
during a real-time tracking task explaining our real-time robot control setup.

2 Inverse Dynamics Models in Feedforward Control

In model-based control, the controller command is computed using apriori knowl-
edge about the system expressed in an inverse dynamics model [1, 8], which is
traditionally given in the rigid-body formulation [1]: M (q) q̈ + F (q, q̇) = u,
where q, q̇, q̈ are joint angles, velocities and accelerations of the robot. M (q)
denotes the inertia matrix and F (q, q̇) all internal forces, including Coriolis and
centripetal forces, gravity as well as unmodel-able nonlinearities.

The motor command u=uFF + uFB is the applied joint torques and consists
out of a feedforward component uFF and a feedback component uFB. The feed-
forward component predicts the torques required to follow a desired trajectory
given by desired joint angles qd, velocities q̇d and accelerations q̈d. If we have
a sufficiently accurate analytical model, we can compute the feedforward com-
ponent by uFF = M (qd) q̈d + F (qd, q̇d). The feedback component is required
to ensure that a tracking error cannot accumulate and destabilize the system.
Linear feedback controllers uFB = Kpe + Kvė, with e = qd − q being tracking
error, are commonly used in the feedforward control setting, where the feedback
gains Kp and Kv are chosen such that they remain low for compliance while
sufficiently high for stability [1].

However, for many robot systems the dynamics model presented by rigid-
body equation as given is not sufficiently accurate, especially in case of unmod-
eled nonlinearities, complex friction and actuator dynamics [2]. This imprecise
model leads to a bad prediction of joint torques uFF which can result in poor

14



control performances or even damage the system. Thus, learning more precise
inverse dynamics models from measured data using regression methods poses
an interesting alternative. In this case, the feedforward component is generally
considered as a function of desired trajectories, hence, uFF = f (qd, q̇d, q̈d).

3 Nonparametric Regression Methods for Model Learning

Learning the feedforward function is a straightforward regression problem as
we can observe the trajectories resulting from our motor commands u. Thus,
we have to learn the mapping from inputs x = [qT , q̇T , q̈T ] ∈ R3n to targets
y = u ∈ Rn. With the learned function, the feedforward torque uFF can be
predicted for a query input point xd = [qT

d , q̇
T
d , q̈

T
d ]. In the remainder of the

section, we discuss three nonparametric regression techniques used for learning
inverse dynamics models, i.e., the current standard method LWPR [5], ν-SVR [7]
and GPR [6].

3.1 Locally Weighted Projection Regression (LWPR)

In LWPR, the predicted value ŷ is given by a combination of N individually
weighted locally linear models normalized by the sum of all weights [2,5], Thus,

ŷ =
∑N

k=1 wkȳk∑N
k=1 wk

, (1)

with ȳk = x̄T
k θ̂k and x̄k = [(x − ck)T , 1]T , where wk is the weight, θ̂k contains

the regression parameter and ck is the center of the k-th linear model. For
the weight determination, a Gaussian kernel is often used: wk = exp(−0.5(x −
ck)TDk(x − ck)), where Dk is a positive definite distance matrix. During the
learning process, the main purpose is to adjust Dk and θ̂k, such that the errors
between predicted values and targets are minimal [5].

3.2 Gaussian Processes Regression (GPR)

GPR is performed using a linear model: y=f(x)+ε with f(x) = φ(x)T w, where
w is the weight vector [6]. The linear computation is done after transforming
the input x with a kernel function φ(•), for which the Gaussian kernel, as given
in Section 3.1, can be taken. It is further assumed that the target value y is
corrupted by a noise ε with zero mean and variance σ2

n.
To make a prediction for a new input x∗ the outputs of all linear models are

averaged and additionally weighted by their posterior [6]. The predicted value
f̄(x∗) and corresponding variance V(x∗) can be given as follow [6]

f̄(x∗) = k∗T
(
K + σ2

nI
)−1

y = k∗T ζ ,

V(x∗) = k(x∗,x∗)− k∗T
(
K + σ2

nI
)−1

k∗ ,
(2)

where k∗ = φ(x∗)
T ΣpΦ, k(x∗,x∗) = φ(x∗)

T Σpφ(x∗) and K = ΦT ΣpΦ. The
matrix Φ denotes an aggregation of columns φ(x) for all cases in the training
set and Σp the variance of the weights.

15



nMSE Joint [i]
[%] 1 2 3 4 5 6 7

LWPR 3.9 1.6 2.1 3.1 1.7 2.1 3.1
GPR 0.7 0.2 0.1 0.5 0.1 0.4 0.6
ν-SVR 0.4 0.3 0.1 0.6 0.2 0.5 0.4

Table 1: Learning error in percent for each
DoF using simulation data.

nMSE Joint [i]
[%] 1 2 3 4 5 6 7

LWPR 1.7 2.1 2.0 0.5 2.5 2.4 0.7
GPR 0.5 0.3 0.1 0.1 1.5 1.2 0.2
ν-SVR 0.8 0.6 0.5 0.1 0.5 1.2 0.1
RBM 5.9 226.3 111.3 3.4 2.7 1.3 1.4

Table 2: Learning error in percent for each
DoF using real SARCOS data.

Joint [i] GPR ν-SVR LWPR
1 0.78 1.17 1.45
2 1.05 1.01 1.63
3 0.24 0.19 0.19
4 2.42 2.34 3.24
5 0.23 0.14 0.23
6 0.31 0.21 0.29
7 0.23 0.24 0.26

Table 3: Tracking error as nMSE
in percent for each DoF using test
trajectories.

3.3 ν-Support Vector Regression (ν-SVR)

For ν-SVR the predicted value f(x) for a query point x is given by [7]

f(x) =
∑m

i=1
(α∗i − αi) k(xi,x) + b , (3)

with k(xi,x) = φ(xi)T φ(x) and m denotes the number of training points. The
transformation φ(•) of the input vector can also be done with an appropriate
kernel function as in the case of GPR. The quantities α∗i , αi and b are determined
through an optimization procedure parameterized by C ≥ 0 and ν ≥ 0 [7]. The
parameter ν implies the width of the tube around the hyperplane (3) and C
denotes the regularization factor for training [7].

4 Evaluations on Data Sets & Application in Control

In this section, we compare the learning performance of LWPR, GPR and ν-
SVR using (i) simulation data and (ii) real SARCOS robot data. Generating
the simulation data, we use a model of the 7-DoF SARCOS master arm created
with the SL-software package [9].

4.1 Evaluation on Simulation Data

For the input data, a trajectory is generated such that it is sufficiently rich.
Subsequently, we control the robot arm tracking those trajectory in a closed-loop
control setting, where we sample the corresponding controller commands for the
target data, i.e., the joint torques. In so doing, a training set and a test set with
21 inputs and 7 targets are generated which consist of 14094 examples for training
and 5560 for testing. The training takes place for each DoF separately, employing
LWPR, GPR and ν-SVR. Table 1 gives the normalized mean squared error
(nMSE) in percent of the evaluation on the test set, where the normalized mean
squared error is defined as: nMSE = Mean squared error/Variance of target.

16



It can be seen that GPR and ν-SVR yield better model approximation com-
pared to LWPR, since GPR and ν-SVR are a global methods. A further ad-
vantage of these methods is that there are only some hyperparameters to be
determined, which makes the learning process more practical. However, the
main drawback is the computational cost. In general, the training time for GPR
and ν-SVR is about 2-time longer compared to LWPR. The advantage of LWPR
is the fast computation, since the model update is done locally. However, due to
many meta parameters which have to be set manually for the LWPR-training,
it is fairly tedious to find an optimal setting for those by trial-and-error.

4.2 Evaluation on Real Robot Data

The data is taken from the real anthropomorphic SARCOS master arm with 7
DoF, as shown in Figure 1. Here, we have 13622 examples for training and 5500
for testing. Table 2 shows the nMSE after learning with real robot data for each
DoF. Additionally, we also determine the nMSE of a linear regression using the
rigid-body robot model (RBM). The resulting error will indicate, how far the
analytical model can explain the data.

Compared to LWPR, GPR and ν-SVR provide better results for every DoF.
Considering the rigid-body model, the linear regression yields very large approx-
imation error for the 2. and 3. DoF. Apparently, for these DoF the nonlinearities
(e.g., hydraulic cables, complex friction) cannot be approximated well using just
the rigid-body functions. This example shows the difficulty using the analytical
model for control in practice, where the imprecise dynamics model will result in
poor control performance for real system, e.g., large tracking error.

4.3 Application to Control

Using the offline-learned models from Section 4.1, the SL-model of the SARCOS
robot arm [9] is controlled to accomplish a tracking task. For desired trajectories,
i.e., joint angles, velocities and accelerations, we generate test trajectories which
are similar to training trajectories, comparing the generalization ability of each
regression method. Table 3 gives the tracking error of each joint as nMSE for the
test trajectories. The Figure 2 shows the corresponding tracking performance
for the joint 1 and 2, other joints are similar. It’s necessary to emphasize that
the control task is done in real-time where the system is sampled with 480 Hz.

It can be seen that the tracking error of GPR and ν-SVR is only slightly
smaller than LWPR in spite of better learning accuracy. This is due to the
reason that in case of GPR and ν-SVR, the controller command u can only
be updated at every 4th sampling step due to more involved calculations for
prediction, see Equations (2) and (3). In spite of those limitations, we are able
to control the robot arm in real-time achieving a competitive performance. For
LWPR, we are able to calculate the controller command for every sampling step,
since evaluation of the prediction values (1) is quite fast. Furthermore, the
results show that the learned models are able to generalized well in present of
unknown trajectories similar to training data.

17



0 1 2 3 4 5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

1. Joint

time [s]

A
m

pl
itu

de
 [r

ad
]

 

 

Desired
LWPR
GPR
ν−SVR

0 1 2 3 4 5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time [s]

A
m

pl
itu

de
 [r

ad
]

2. Joint

Fig. 2: Tracking performance for joint 1 and 2. Other joints are similar.

5 Conclusion

Our results indicate that GPR and ν-SVR can be made to work for control appli-
cations in real-time, and that it is easier to apply to learning problems achieving
a higher learning accuracy compared to LWPR. However, the computational
cost is prohibitively high for online learning. Our next step is to modify GPR
and ν-SVR, so that they can be used for an online regression and thus is capable
for real-time learning. Here, the problem of expensive computation has to be
overcome using other techniques, such as sparse or local models [10].

References

[1] John J. Craig. Introduction to Robotics: Mechanics and Control. Prentice Hall, 3. edition
edition, 2004.

[2] J. Nakanishi, Jay A. Farrell, and S. Schaal. Composite adaptive control with locally
weighted statistical learning. Neural Networks, 2005.

[3] E. Burdet and A. Codourey. Evaluation of parametric and nonparametric nonlinear
adaptive controllers. Robotica, 16(1):59–73, 1998.

[4] J. Kocijan, R. Murray-Smith, C. Rasmussen, and A. Girard. Gaussian process model
based predictive control. Proceeding of the American Control Conference, 2004.

[5] S. Vijayakumar and S. Schaal. Locally weighted projection regression: An O(n) algorithm
for incremental real time learning in high dimensional space. International Conference
on Machine Learning, Proceedings of the Sixteenth Conference, 2000.

[6] Carl E. Rasmussen and Christopher K. Williams. Gaussian Processes for Machine Learn-
ing. MIT-Press, Massachusetts Institute of Technology, 2006.

[7] Bernhard Schölkopf and Alex Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT-Press, Cambridge, MA, 2002.

[8] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Dynamics and Control.
John Wiley and Sons, New York, 2006.

[9] S. Schaal. The SL simulation and real-time control software package. University of
Southern California.

[10] D. Nguyen-Tuong. Machine learning for robot motor control. Thesis Proposal (unpub-
lished). Max Planck Institute of Biological Cybernetics, 2007.

18


