
Similarities and differences between policy
gradient methods and evolution strategies

Verena Heidrich-Meisner and Christian Igel ∗

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Abstract. Natural policy gradient methods and the covariance matrix
adaptation evolution strategy, two variable metric methods proposed for
solving reinforcement learning tasks, are contrasted to point out their con-
ceptual similarities and differences. Experiments on the cart pole bench-
mark are conducted as a first attempt to compare their performance.

1 Introduction

Reinforcement learning (RL) algorithms search for a policy mapping states of
the environment to (a probability distribution over) the actions an agent can
take in those states. The goal is to find a behavior such that some notion of
future reward is maximized. Direct policy search methods address this task
by directly learning parameters of a function explicitly representing the policy.
Here we consider two general approaches to conduct direct policy search, namely
policy gradient methods (PGMs) and evolution strategies (ESs). We will argue
that these approaches are quite similar. This makes it all the more surprising
that so far there has been no systematic comparison of PGMs and ESs applied
to the same test problems and operating on the same class of policies with the
same parameterization. This paper is our attempt to draw such a comparison,
on a conceptual level and by conducting first empirical studies. We restrict our
consideration to the natural actor critic algorithm (NAC, [1, 2]) and the covari-
ance matrix adaptation ES (CMA-ES, [3]), which are compared in the context of
optimization in [4]. We picked these two because they can be considered state-
of-the-art, they are our favorite direct policy search method and evolutionary
RL algorithm, respectively, and they are both variable metric methods.

In section 2 we briefly review the NAC algorithm and the CMA-ES. Section
3 describes the conceptual relations of these two approaches and in section 4 we
use a simple toy problem to compare the methods empirically.

2 Direct policy search methods

Although our methods are applicable in non-Markovian environments, for this
section we assume that the RL problem is described by a Markov decision process
[S,A,P,R], where S denotes the set of states, A the possible actions, Pa

s,s′

the probability that action a taken in state s leads to state s′, and Ra
s,s′ the

∗The authors acknowledge support from the German Federal Ministry of Education and
Research within the Bernstein group “The grounding of higher brain function in dynamic
neural fields”.

149



expected reward received after transition from state s to s′ while performing
action a. An agent interacts with the environment on a discrete time scale
following a behavioral policy π : S × A → R, where π(s, a) is the probability
to choose action a in state s (for deterministic policies we write π : S → A).
The goal of reinforcement learning is to find a behavioral policy π such that
some notion of expected future reward ρ(π) is maximized. For example, for
episodic tasks we can define ρ(π) =

∑
s,s′∈S,a∈A dπ(s)π(s, a)Pa

s,s′Ra
s,s′ , where

dπ(s) = limt→∞ Pr{st = s | s0, π} is the stationary state distribution, which we
assume to exist, st is state in time step t, and rt+1 ∈ R is the reward received after
the action in time step t. Most RL algorithms learn value functions measuring
the quality of an action in a state and define the policy on top of these functions.
Direct policy search methods search for a good policy in a parametrized space
of functions. They may build on estimated value functions (as policy gradient
methods usually do), but this is not necessary (e.g., in evolution strategies). For
a recent introduction to RL we refer to [5].

Policy gradient ascent Policy gradient methods assume a differentiable struc-
ture on a predefined class of stochastic policies and ascent the gradient of a
performance measure. Let the performance ρ(π) of the current policy with pa-
rameters θ be defined as above. The performance gradient ∇θρ(π) with respect
to the policy parameters θ is estimated from interaction with the environment.

The policy gradient theorem [6] ensures that the performance gradient can
be determined from unbiased estimates Q̂π and d̂π of state-action value function
Qπ(s, a) = E [

∑∞
t=0 rt+1|π, s0 = s, a0 = a] and the stationary distribution, re-

spectively. For any MDP we have ∇θρ =
∑

s∈S dπ(s)
∑

a∈A ∇θπ(s, a)Q̂π(s, a).
This formulation contains explicitly the unknown value function, which has to be
estimated. It can be replaced by a function approximator fw : S ×A → R (the
critic) with real-valued parameter vector w satisfying the convergence condi-
tion

∑
s∈S dπ(s)

∑
a∈A π(s, a) [Qπ(s, a)− fw(s, a)] ∇wfw(s, a) = 0. This leads

directly to the extension of the policy gradient theorem for function approxima-
tion. If fw satisfies the convergence condition and is compatible with the policy
parametrization in the sense that ∇wfw(s, a) = ∇θπ(s, a)/π(s, a) (i.e., fw is
linear in the corresponding features), then the policy gradient theorem holds if
Q̂π(s, a) is replaced by fw(s, a).

Stochastic policies π with parameters θ are parametrized probability distri-
butions. In the space of probability distributions, the Fisher information matrix
F (θ) induces an appropriate metric suggesting “natural” gradient ascent in the
direction of ∇̃θρ(π) = F (θ)−1∇θρ(π). Using the definitions above, we have
F (θ) =

∑
s∈S dπ(s)

∑
a∈A πθ(s, a)∇θ ln(π(s, a))(∇θ ln(π(s, a)))T . This implies

∇θρ = F (θ)w, which leads to the most interesting identity ∇̃θρ(π) = w. Bag-
nell and Schneider [7] build an algorithm directly for the metric, while Peters et
al. [1] integrate the natural gradient in an actor-critic architecture (NAC).

Evolution strategy Evolution strategies are direct iterative random search
algorithms. In the CMA-ES [8, 3] a set of μ candidate solutions (here param-

150



eter vectors describing policies), the parent population, are maintained, from
which λ > μ new candidate solutions are generated in each iteration. The
performances of these offspring solutions (policies) are determined and the μ
best form the parent population in the next iteration. In each iteration, the
kth offspring xk ∈ R

n is generated by multi-variate Gaussian mutation and
weighted global intermediate recombination, i.e., xk = 〈xparents〉w + σzk, where
zk ∼ N(0,C) and 〈xparents〉w =

∑μ
i=1 wixith-best-parent (wi ∝ ln(μ + 1)− ln(i),

‖w‖1 = 1). The CMA-ES is a variable metric algorithm adapting both the
n-dimensional covariance matrix C of the normal mutation distribution as well
as the global step size σ ∈ R

+. In the basic algorithm, a low-pass filtered
evolution path p of successful directions (i.e., selected steps) is stored, p ←
η1 p + η2 (〈xnew parents〉 − 〈xold parents〉), and C is changed to make steps in the
direction p more likely: C ← η3 C + η4 ppT (this rank-one update of C is
augmented by a rank-μ update, see [8]). The variables η1, . . . , η4 denote fixed
learning rates and normalization constants set to default values [8].

policy

policy 
parameter

metric

insert 
gauss

new 
action

CMA - ESNAC

insert 
gauss

state reward

adapts adapts

explores

explores

Fig. 1: Conceptual similarities and differences
of natural policy gradient ascent and CMA
evolution strategy: Both methods adapt a
metric for the variation of the policy param-
eters based on information received from the
environment. Both explore by stochastic per-
turbation of policies, but at different levels.

The global step size σ is
adapted on a faster timescale. It is
increased if the selected steps are
larger and/or more correlated than
expected and decreased if they are
smaller and/or more anticorrelated
than expected. The highly effi-
cient use of information and the
fast adaptation of σ and C makes
the CMA-ES one of the best direct
search algorithms for real-valued
optimization. It was successfully
applied to RL using policies based
on neural dynamics in [9].

3 Comparison of NAC
and CMA-ES

Policy gradient methods and ESs
are similar to each other in several
respects, see Fig. 2. They search
directly in policy space, thus the
actor-part in the agent is learned
actively. However, while ESs are
actor-only methods, the NAC has
an actor-critic architecture. In both approaches the class of possible policies is
given by a parametrized family of functions, but in the case of PGMs the choice
of the policy class is restricted by the compatibility condition of the policy gra-
dient theorem.

Both PGMs and ESs rely on random perturbations to explore the space of

151



policies. Evolutionary methods usually perturb a deterministic policy by muta-
tion and recombination, while in PGMs the random variations are an inherent
property of the stochastic policies. While the number n of parameters of the
policy determines the n-dimensional random variation in the CMA-ES, in the
PGMs the usually lower dimensionality of the action corresponds to the dimen-
sionality of the random perturbations. However, in ESs there is only one initial
stochastic variation per episode, while the stochastic policy introduces pertur-
bations in every step of the episode.

The CMA-ES as well as the NAC are variable-metric methods. A natural
policy gradient method implicitly estimates the Fisher metric to follow the natu-
ral gradient of the performance in the space of the policy parameters and chooses
its action according to a stochastic policy. Assuming a Gaussian distribution of
the actions this resembles the CMA-ES. In the CMA-ES the parameters are
perturbed according to a multi-variate Gaussian distribution. The covariance
matrix of this distribution is adapted online. This corresponds to learning an
appropriate metric for the optimization problem at hand. After the stochastic
variation the actions are chosen deterministically. Thus, both types of algo-
rithms perform the same conceptual steps to obtain the solution. They differ in
the order of these steps and the level at which the random changes are applied.

4 Experiments

For our first experiments we focus on one single task, pole-balancing, which is
a well-known benchmark problem in RL. A pole is mounted on a cart living
in a 1-dimensional space; the goal is to balance the pole in the center of the
available area as long as possible by applying forces to the cart. The problem
is treated as an episodic task, where an episode either ends when the pole falls
down (when the angle becomes larger than 0.7 rad), when the cart leaves the
available area, or after a predefined maximum number of time steps N . The
state description consists of current position and velocity of the cart and the
current angle and angular velocity of the pole s = (x, ẋ, ζ, ζ̇)T . The agents
receives a reward of 0 for every time step the agent is in the target area (space
coordinate of the cart is close to the center |x| < 0.05 and the pole is almost
perpendicular |ζ| < 0.05), a reward of −2(N − t), if the pole crashes (|ζ| > 0.7)
or leaves the allowed x-range (|x| > 2.4) at time step t, and a reward of −1 for
every other time step. The starting point for an episode is drawn from one of two
start intervals: x ∈ [−2, 2], ζ ∈ [−0.6, 0.6] and x ∈ [−0.2, 0.2], ζ ∈ [−0.2, 0.2].
The velocities are always initialized with 0. Both methods operate on the same
policy class πdeter

θ (s) = θT s with s,θ ∈ R
4. For learning, the NAC uses the

stochastic policy πstoch
θ (s, a) = N(πdeter

θ (s), σNAC), where the variance σNAC is
viewed as an additional adaptive parameter of the PGM. The NAC is evaluated
on the corresponding deterministic policy. In all experiments the same number
of neval = 10 episodes is used for assessing the performance of a policy. We
analyse both learning from scratch where the initial policy is set to θ = 0 and
from initial policies with an average performance of ρ = 376.1 on the easiest set

152



-1000

-800

-600

-400

-200

 0

 0  5000  10000  15000  20000

m
ed

ia
n 

of
 R

et
ur

n 
pe

r 
ep

is
od

e

number of episodes

σ=1

σ=10

σ=50

σ=100

a)

-1000

-800

-600

-400

-200

 0

 0  10000  20000  30000  40000  50000  60000  70000  80000

m
ed

ia
n 

of
 R

et
ur

n 
pe

r 
ep

is
od

e

number of episodes

α=0.01, σNAC=100
 α=0.001, σNAC=100

α=0.001, σNAC=50
 α=0.0001, σNAC=100

α=0.01, σNAC=50
α=0.0001, σNAC=50

α=0.01, σNAC=10
α=0.001, σNAC=10

α=0.01, σNAC=1
α=0.001, σNAC=1

 α=0.1, σNAC=100
α=0.0001, σNAC=10

α=0.1, σNAC=50
α=0.1, σNAC=10

α=0.1, σNAC=1
α=0.0001, σNAC=1

b)b)

-1000

-800

-600

-400

-200

 0

 0  5000  10000  15000  20000

m
ed

ia
n 

of
 R

et
ur

n 
pe

r 
ep

is
od

e

number of episodes

NAC α=0.01, σNAC=100
CMA σ=10

c)

-1000

-800

-600

-400

-200

 0

 0  5000  10000  15000  20000

m
ed

ia
n 

of
 R

et
ur

n 
pe

r 
ep

is
od

e

number of episodes

NAC α=0.01, σNAC=50
CMA σ=50

d)

-1000

-800

-600

-400

-200

 0

 0  5000  10000  15000  20000

m
ed

ia
n 

of
 R

et
ur

n 
pe

r 
ep

is
od

e

number of episodes

NAC α=0.01, σNAC=50
CMA σ=100

e)

-1000

-800

-600

-400

-200

 0

 0  5000  10000  15000  20000

m
ed

ia
n 

of
 R

et
ur

n 
pe

r 
ep

is
od

e

number of episodes

NAC α=0.001, σNAC=10
CMA σ=50

f)

Fig. 2: Performance of NAC and CMA-ES on the pole balancing task as described
in [10]. Performance is measured as the observed accumulated reward for start states
drawn from the starting regime. The median over 20 independent trials is shown. a)
CMA-ES for initial policy π0 with θ = 0 and start states drawn from x ∈ [−0.2, 0.2],
ζ ∈ [−0.2, 0.2] (SI) with different initial global step sizes σ. b) NAC for initial policy
π0 and start states drawn from SI with different learning rates α and initial values for
the standard deviation σNAC, ordered by the final performance value (note the larger
scale) c) CMA-ES and NAC for initial policy π0 with best initial value of σ, σNAC

and best learning rate for start region SI. d) CMA-ES and NAC for initial policy π0

with best initial value of σ, σNAC and best learning rate for start region x ∈ [−2.0, 2.0],
ζ ∈ [−0.6, 0.6] (SII). e) CMA-ES and NAC for initial policies πinit with average
performance ρ = 376.1 with best initial value of σ, σNAC and best learning rate for
starting points in SI. f) CMA-ES and NAC for initial policies πinit with best initial
value of σ, σNAC and best learning rate for starting points in SII.

of start points generated the same way as in [10].
Figure 2 shows that the CMA-ES and NAC perform equally well for the

easier starting region, but the CMA-ES is more robust in the sense that its

153



performance is less dependent on the value of its single hyperparameter, the
initial global step size σ, while the performance of the NAC depends strongly
on the values of its parameters, learning rate α and initial σNAC. On the second
set of start states, which represent a more difficult task, the CMA-ES clearly
outperforms NAC. The CMA-ES does not exploit reasonably good initial polices.
Instead it simply ignores this information and performs equally good as in the
first setup. In contrast, the NAC algorithm profits from the better initialization.

5 Conclusion

Evolution strategies (ES) like the CMA-ES are conceptually similar to policy
gradient methods on RL problems. The application of the ES is not restricted
by the compatibility conditions of the policy gradient theorem. Our preliminary
comparisons indicate that the CMA-ES is more robust w.r.t. to the choice of
hyperparameters and initial policies. In terms of learning speed, the natural
policy gradient ascent performs on par for fine-tuning and may be preferable in
this scenario. In future work we will extend the experiments to different and
more complex benchmark tasks and compare the two selected methods to other
direct policy search methods.

References

[1] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid robotics.
In Proc. 3rd IEEE-RAS Int’l Conf. on Humanoid Robots, pages 29–30, 2003.

[2] J. Peters and S. Schaal. Applying the episodic natural actor-critic architecture to motor
primitive learning. In Proceedings of the 15th European Symposium on Artificial Neural
Networks (ESANN 2007), pages 1–6. Evere, Belgien: d-side publications, 2007.

[3] N. Hansen. The CMA evolution strategy: A comparing review. In Towards a new
evolutionary computation. Advances on estimation of distribution algorithms., pages 75–
102. Springer-Verlag, 2006.

[4] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution strategies.
Accepted at IEEE World Congress on Computational Intelligence (WCCI 2008).

[5] V. Heidrich-Meisner, M. Lauer, C. Igel, and M. Riedmiller. Reinforcement learning in a
Nutshell. In 15th European Symposium on Artificial Neural Networks (ESANN 2007),
pages 277–288. Evere, Belgien: d-side publications, 2007.

[6] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems, volume 12, pages 1057–1063, 2000.

[7] J. Bagnell and J. Schneider. Covariant policy search. In Proc. 18th Int’l Joint Conf. on
Artificial Intelligence, pages 1019–1024, 2003.

[8] N. Hansen, S.D. Müller, and P. Koumoutsakos. Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolu-
tionary Computation, 11(1):1–18, 2003.

[9] A. Pellecchia, C. Igel, J. Edelbrunner, and G. Schöner. Making driver modeling attractive.
IEEE Intelligent Systems, 20(2):8–12, 2005.

[10] M. Riedmiller, J. Peters, and S. Schaal. Evaluation of policy gradient methods and vari-
ants on the cart-pole benchmark. In Proc. IEEE Int’l Symposium on Approximate Dy-
namic Programming and Reinforcement Learning (ADPRL 2007), pages 254–261, 2007.

154


