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Abstract.

Computational neuroscience is an appealing interdisciplinary domain, at
the interface between biology and computer science. It aims at understand-
ing the experimental data obtained in neuroscience using several different
kinds of models, one of which being artificial neural networks.

In this tutorial we review some of the advances neural networks have
achieved in computational neuroscience, and in particular focusing on spik-
ing neural networks. Several artificial neuron models, that are able to
account for the temporal properties of biological neurons, are described.
We also describe briefly data obtained using conventional neuroscience
methods, and some artificial neural networks developed to understand the
mechanisms underlying these experimental data.

1 Introduction

Computational neuroscience aims at creating models from experimental data ob-
tained in neurophysiology and neuro-imaging experiments. There exists a wide
range of symbolic supports for modelling, including Markov chains, bayesian
networks, mean-field equations, and oscillator synchronisation. The present tu-
torial focuses on models based on artificial neural networks, and in particular,
on spiking neuron networks (SNN).

Several models illustrate the classification we propose, starting from micro-
scopic properties: single neuron behaviour, to mesoscopic properties: behaviour
of a population of neurons, in a cortical column or in a brain area, and finally to
macroscopic properties: observable behaviour of the brain, through one or other
cognitive process.

2 Microscopic models

2.1 Computational properties of single biological neurons

One of the key problems in computational neuroscience is defining the operations
that represent single neurons. Neurons have been considered to encode their out-
puts by their average firing rates. As an example, Hubel & Wiesel’s experiments
[1] proved the specificity of primary visual cortex (V1) neurons for a prefered
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orientation. For example, such a behaviour of biological neurons is reproduced
by the threshold or sigmoidal neuron models, in multi-layer perceptrons.

However in the late 80’s, some experiments raised doubts on this behaviour of
single neurons. In a seminal paper, Gray and Singer [2] showed that correlations
between spike timings of primary visual cortex of the cat are related to the
nature of presented stimulus. If two stimuli share common properties (e.g. a
common motion), then the spike timings of the neurons in different visual fields
are correlated. However, the correlation does not appear if the stimuli have
different properties e.g. different motions.

Another article by Thorpe and Imbert [3], based on theoretical assumptions,
also raised some doubt regarding rate coding in the nervous system. From
experimental data, Thorpe and Imbert showed that the speed of computation
in the visual system is too fast to allow the integration of more than one spike,
at each processing step. Since all spikes share the same properties of shape and
temporal course, only the timing of spikes can bear relevant information.

In the 90’s, several authors studied the computational properties of spike
timing. Considering random incoming signals, for instance gaussian noise gener-
ated signals, balanced between excitatory and inhibitory PSPs 1, they observed
that spike timing encodes a significant higher proportion of excitatory PSPs in-
coming simultaneously at the neuron soma [4]. It may be that there exists a
code based on synchrony detection, and acting on a very short time-scale, that
acts in complement with the rate-based code [5].

Computational properties of a neuron also depend on its physiological param-
eters. Using a temporal neuron model, König et al. [6] showed that, depending
on the time constant of the voltage leak of a neuron, a single neuron can act
either as a temporal integrator or as a coincidence detector. A temporal inte-
grator behaviour means that the neuron fires a spike whenever a given count of
excitatory PSPs has reached the neuron, whatever the timing of their arrivals.
When the neuron acts as a coincidence detector, the neuron fires a spike when
several EPSPs (even a small number) reach simultaneously the neuron soma.

Destexhe et al. [7] have shown that a model neuron, randomly reached by
a very high number of inputs, can behave exactly as observed in vivo. They
show that the model reproduces the amplitude and spectral properties observed
in experiments. Furthermore, the presence of background activity can enhance
the responsiveness of a neuron.

All these observations have raised the possibility of developing several artifi-
cial neuron models, where time is an intrinsic property.

2.2 Temporal models of neurons

2.2.1 Hodgkin-Huxley model

The fathers of the spiking neurons are the conductance-based models, such as
the electrical model defined by Hodgkin and Huxley [8, 9] in 1952. The basic

1PSPs = Post-Synaptic Potentials
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idea is to model electro-chemical information transmission of natural neurons
by electric circuits made of capacitors and resistors: C is the capacitance of the
membrane, the gi are the conductance parameters for the different ion channels
(sodium Na, potassium K, etc.) and the Ei are the corresponding equilibrium
potentials. Variables m, h and n describe the opening and closing of the voltage
dependent channels.

C
du

dt
= −gNam3h(u− ENa)− gKn4(u− EK)− gL(u− EL) + I(t) (1)

τn
dn

dt
= −[n− n0(u)] τm

dm

dt
= −[m−m0(u)] τh

dh

dt
= −[h− h0(u)]

The Hodgkin-Huxley model (HH) is realistic but far too complex for the
simulation of SNNs. Although ODE2 solutions can be applied directly to the
system of HH differential equations, it would be intractable to compute temporal
interactions between neurons in a large network of Hodgkin-Huxley models.

The HH model has been compared successfully - with appropriate calibration
of parameters - to numerous data from biological experiments on the giant axon
of the squid. More generally, the HH model is able to model biophysically
meaningful variations of the membrane potential, as recorded from neurons in-
vivo: An abrupt, high increase at firing time, followed by a short time where the
neuron is unable to spike again, the absolute refractoriness, and a further time
range where the membrane is underpolarized, which makes a new firing more
difficult, i.e. the relative refractory period.

2.2.2 Integrate-and-Fire model

More tractable models are the Integrate-and-Fire (I&F) neurons ([10] cited
by [11]). The most important simplification implies that the shape of the action
potentials is neglected and every spike is considered as a uniform event defined
only by the time of its appearance. The basic circuit consists of a capacitor C in
parallel with a resistor R driven by an input current I(t). The dynamics of the
membrane potential can be described by a single first-order linear differential
equation: RC du

dt = RI. Defining the time constant of the neuron membrane as
τm = RC, for modelling the voltage leakage, the usual formula for the Leaky
Integrate-and-Fire neuron (LIF), can be written as follows:

τm
du

dt
= urest − u(t) + RI(t) (2)

In addition, the firing time t(f) of the neuron is defined by a threshold crossing
equation u(t(f)) = ϑ, under the condition u′(t(f)) > 0. Immediately after t(f),
the potential is reset to a given value ur. An absolute refractory period can be
modelled by forcing the neuron to a value u = −uabs during a time dabs after a
spike emission, and then restarting the integration with initial value u = ur.

2ODE = Ordinary Differential Equations
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There exist many variations between the HH and LIF models, with decreasing
biophysical plausibility, but also with decreasing computational cost (see [12] for
a review) for in-depth comparison of HH and LIF subthreshold dynamics).

Note that the same neuron cannot be simultaneously an “integrator” and
“resonator” since the properties are mutually exclusive, but the same neuron
model can simulate all of them, with different choices of parameters. In the
class of spiking neurons controlled by differential equations, the two-dimensional
Izhikevich neuron model [13] defined by the coupled equations

du

dt
= 0.04u(t)2 + 5u(t) + 140− w(t) + I(t)

dw

dt
= a (bu(t)− w(t)) (3)

with after-spike resetting: if u ≥ ϑ then u← c and w ← w + d

is a good compromise between biophysical plausibility and computational cost.

2.2.3 Spike Response Model

More simple to understand and to implement is the Spike Response Model
(SRM) defined by Gerstner et al. [14, 15]. The model expresses the membrane
potential u at time t as an integral over previous times, including a model of
refractoriness, but without differential equations. SRM is a phenomenological
model of a neuron, based on the occurence of spike emissions.

Let Fj = {t(f)
j ; 1 ≤ f ≤ n} = {t | uj(t) = ϑ ∧ u′

j(t) > 0} denote the set of
all firing times of neuron Nj , and Γj = {i | Ni is presynaptic to Nj} define its
set of presynaptic neurons. The state uj(t) of neuron Nj at time t is given by

uj(t) =
X

t
(f)
j ∈Fj

ηj

“
t − t

(f)
j

”
+

X
i∈Γj

X
t
(f)
i ∈Fi

wijεij

“
t − t

(f)
i

”
+

Z ∞

0

κj(r)I(t − r)dr

| {z }
if external input current

(4)

with the following kernel functions: ηj is non-positive for s > 0 and models the
potential reset after a spike emission, εij describes the response to presynaptic
spikes, and κj describes the response of the membrane potential to an external
input current.

Kernel εij describes the generic response of a neuron Nj to spikes coming
from presynaptic neurons Ni. For the sake of simplicity, εij(s) can be assumed
to have the same form ε(s − dax

ij ) for any pair of neurons, only modulated in
amplitude and sign by the weight wij (excitatory EPSP for wij > 0, inhibitory
IPSP for wij < 0).

A short term memory variant of SRM results from assuming that only the
last firing t̂j of Nj contributes to refractoriness, ηj

(
t− t̂j

)
replacing the sum

in formula (4). Moreover, integrating the equation on a small time window
of 1ms and assuming that each presynaptic neuron emits at most once in the
time window (reasonable since refractoriness of presynaptic neurons), we obtain
the again simplified formula of model SRM0, which is very close to the actual
expression of neural activity, in rate coding

vj(t) =
∑
i∈Γj

wijε(t− t̂i − dax
ij ) (5)
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with next firing time t
(f+1)
j = t⇐⇒ vj(t) = ϑ− ηj

(
t− t̂j

)
︸ ︷︷ ︸

threshold kernel

Despite its simplicity, the Spike Response Model is more general than the
Integrate-and-Fire neuron and is often able to compete with the Hodgkin-Huxley
model for simulating complex neuro-computational properties.

2.3 Synaptic plasticity

From the early work presented by Hebb in 1949 [16], synaptic plasticity has
been the main basis of learning rules, by weight updating in artificial neural
networks. However Hebb’s ideas are poorly exploited by most of the current
algorithms [3].

Novel tracks for setting algorithms that control the synaptic plasticity are
derived from both a deeper understanding of Hebb’s lesson and from a bank of
recent results in neuroscience, following the advances of experimental technol-
ogy. Innovative principles are often referred as temporal Hebbian rules. In
the biological context of natural neurons, the changes of synaptic weights with
effects lasting several hours are referred as LTP3 if the weight values (also named
efficacies) are strengthened, and LTD if the weight values are decreased. In the
second or minute timescales, the weight changes are designed by STP and STD4.

A good review of the main synaptic plasticity mechanisms for regulating
levels of activity in conjunction with Hebbian synaptic modification has been
developed by Abbott and Nelson in [17]:

• Synaptic scaling: For example, cortical neurons actively maintain an aver-
age firing rate by scaling their incoming weights. Synaptic scaling is mul-
tiplicative, in the sense that synaptic weights are changed by an amount
proportional to their strength, and not all by the same amount (additive
/ subtractive adjustment).

• Synaptic redistribution: Markram and Tsodyks’ experiments [18] have crit-
ically challenged the conventional assumption that LTP reflects a general
gain increase. The phenomenon of “Redistribution of Synaptic Efficacy”
(RSE) designs the change in frequency dependence they have observed
during synaptic potentiation. Synaptic redistribution could enhance the
amplitude of synaptic transmission for the first spikes in a sequence, but
with transient effect only.

• Spike-timing dependent synaptic plasticity5: STDP is far from being the
most popular synaptic plasticity rule (first related articles [19, 20, 15]).
STDP is a form of Hebbian synaptic plasticity sensitive to the precise

3LTP = Long Term Potentiation - LTD = Long Term Depression
4STP = Short Term Potentiation - STD = Short Term Depression
5STDP = Spike-Time Dependent Plasticity
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timing of spike emission. It relies on local information driven by back-
propagation of the timing of action potential through the dendrites of
the postsynaptic neuron. The type and amount of long-term synaptic
modification induced by repeated pairing of pre- and postsynaptic action
potential as a function of their relative timing varies from an experiment
to another, in neuroscience. In a computational model, however, a basic
principle has emerged: A maximal increase of synaptic efficacy occurs on
a connection when the presynaptic neuron fires a short time before the
postsynaptic neuron, whereas a late presynaptic spike (just after the post-
synaptic firing) leads to a decrease in the weight. If the two spikes (pre-
and post-) are very distant in time, then the weight remains unchanged.
This form of potentiation/depression timing dependency reflects a form of
causal relationship in information transmission through action potentials.

Intrinsic plasticity is another form of synaptic plasticity that has been re-
cently introduced in spiking neuron network models [21]. Intrinsic plasticity
is a persistent modification of a neuron’s intrinsic electrical properties by neu-
ronal or synaptic activity. It is mediated by changes in the expression level
or biophysical properties of ion channels in the membrane, and can affect di-
verse processes, like synaptic integration, subthreshold signal propagation, spike
generation, spike backpropagation, and meta-plasticity.

3 Mesoscopic models

The mesoscopic level includes models reproducing the behaviour of a given cere-
bral structure, and modelling the properties of the neurons in this structure.
The purpose is to describe how a collective behaviour, observed at this level by
neuroscientists, can emerge from the interaction between populations of neurons,
starting from the behaviour of single neurons.

3.1 Perception

3.1.1 Fast visual processing

Experiments using human subjects [22] have shown that even the processing of
complex pictures can be achieved extremely quickly. For pictures shown only
a very short presentation time 50ms, the subjects are still able to achieve a
very simple categorization i.e. is there an animal or not in the picture, faster
than 150ms. “SpikeNet” model [23] reproduces experimental observations with
a physiologically plausible model. In this model, the processing is based on
rank-order coding, taking into account the timing of the first spikes only. With
only one percent of neurons of the higher-level layer firing a spike, the system is
already able to recognize the rough shape of the picture.
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3.1.2 Temporal binding

Feature binding is a problem studied by psychologists [24, 25], where the fact
that different attributes of the same object are processed in different areas of
the nervous system e.g. shape in area V1 and V2, and colour in area V4. The
feature binding problem can be formulated in the following way: “At a higher
level, how are the different attributes of a same object processed as belonging to
the same object, without confusion, if several objects are displayed together?”.

The temporal binding hypothesis addresses this problem: the spike timings
of the neurons processing attributes of the same object are correlated, and thus
the system is able to tag them as being part of the same object [26, 27]. This
hypothesis has received a number of experimental confirmations, in both animals
[2, 28] and humans [29].

Several models have been built to address this problem. In [30], the different
areas where the attributes are processed, are linked to higher processing levels by
means of bidirectional connections. Watanabe et al. show that the system is able
to maintain correlated activity between the different levels of processing, due to
reverberating activities. Cell assemblies are measured by means of functional
connectivity: a stimulus presentation induces the formation of a dynamic cell
assembly, with a composition that may vary in time, without being completely
determined by the underlying anatomical connectivity.

3.2 Activity persistence

In [31], Amit and Brunel study the conditions of formation of a stimulus-
dependent cell assembly being able to self maintain in the system after the
stimulus has disappeared. The authors show that the persistent activity is due
to the selection of transmission delays between neurons. If the synaptic plasticity,
which is responsible for this selection, is not strong enough, the stimulus-induced
activity is unable to be persistent. Furthermore, the selective formation of the
cell assembly is faster when the network displays background activity before the
presentation of the stimulus (compared to the situation where there is no ac-
tivity at all). The spontaneous activity thus allows the system to be stronger
reactive to processed inputs.

Following the previous work, Mongillo et al. [32] were interested in the
persistent activity occuring in infero-temporal cortex of the monkey, as observed
experimentally by Nakamura and Kubota [33]. In the working memory task, the
monkey has to remember a given face during a time period, and to compare
it with another face presented after this time. Experimental data showed that
during the time period of remembering, the neurons keep a high level of activity,
even in the presence of distractors during the time range. Mongillo et al. describe
a model that can produce these experimental results. The persistent activity
is increased as the number of trials increases, and is related to the ratio of
fast (AMPA receptors) and slow (NMDA receptors) synaptic plasticity. If the
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recurrent excitation is fast, the transition is abrupt. If the recurrent excitation is
slow, then the synaptic plasticity increases gradually, reproducing experimental
data.

3.3 Oscillations

Oscillations have been used to study aspects in neuroscience, since oscillations
are supposed to be the code allowing several structures in the brain to interact
[34, 35]. The way oscillations are generated have been studied by computational
models.

One way to describe the emergence of oscillations is to study the conditions
under which oscillations appear. Therefore, neuron parameters can be studied
using a mean-field approach: each element is considered to be stochastically
linked with the others, and the behaviour of the whole population is studied via
the average behaviour of single elements. Some models reproduce the mecha-
nisms of oscillation generation in a given brain structure, e.g. rat hippocampus
[36, 37, 38, 39, 40], insect antennal lobe [41, 42]. These models describe interac-
tions inside a population of neurons [43, 44, 36], or between several populations
with different properties - usually, one population of excitatatory neurons and
one population of inhibitory neurons [37, 39, 40].

For instance, Whittington et al. [37] describe a model that is able to ex-
plain the co-existence of “gamma” (30-80Hz) and “beta” (10-20 Hz) oscillations
in CA1, one structure of the rat hippocampus. The authors show that the in-
troduction of synaptic plasticity makes the system able to maintain a “beta”
oscillation when the system is stimulated. This oscillation disappears in absence
of stimulation, corresponding to what is observed experimentally.

In [40], Brunel et al. describe a model reproducing very closely the properties
of the neurons in the rat hippocampus. They show that the average activity of
the population can achieve a rythmic oscillation (close to “gamma” oscillations),
although each neuron has itself a very low activity (about 2Hz). This work is
a good example of how models can help in solving some apparently antagonist
experimental observations (high average activity and low single neuron activity).

4 Macroscopic models

In mesoscopic models described in Section 3, the influences coming from other
structures are modelled by means of stochastic spikes (e.g., following a Poisson
distribution). There is a paradox in these models: why the spike timings inside
the structure should be completely determined, whereas the spikes coming from
outside the structure are random? The only way to overcome this problem would
be to build a model including all the structures interacting in the nervous system.
However building, and simulating on a computer, a model of the whole nervous
system, with comparable numbers of neurons, is at present clearly unrealistic.
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4.1 A priori models

Some models have been designed for simulating large-scale interactions between
distinct areas of the nervous system. For example, thalamo-cortical interactions
have been simulated [45, 46], to study the conditions of emergence of gamma
oscillations and the way lesions in various parts of the system may alter the
gamma oscillation generation.

In [47], Krichmar and Edelman have designed a biologically-inspired system
to control a robot interacting with the environment. The model is composed of
two perceptual systems (audition and vision), a memory system, and a motor
system. The system as a whole implements about 16000 neurons, and more than
one million synapses. The authors also implement conditionning mechanisms.
The aim of the experiments has been to study simultaneously different levels of
interactions (microscopic to macroscopic) in the system.

More recently, a similar model was used to study the emergence of place cells
i.e. neurons whose activity is specifically enhanced when the individual is in a
given place, in the modelled hippocampus of the system [48]. The authors focus
on a specific substructure of the whole system, but the originality of their work
is that the spike timings coming from the other sub-structures are completely
defined, and are influenced by stimuli perceptions.

4.2 A posteriori models

An other way to study how several structures interact is to build an a posteriori
model. In such an approach, the design of the neural network model is not based
on the reproduction of known neural architectures or dynamics. The design is
rather based on the ability of the model to cope with a given behavioural task.

In [49], Meunier describes a model (EvoSNN, for Evolutionary Spiking Neu-
ron Network) composed of several randomly interacting populations of neurons.
The topology of the network is adapted through an evolutionary algorithm. The
fitness criterion of the evolutionary algorithm is based on the survival behaviour
of a virtual individual controlled by EvoSNN and moving in a virtual preys-
predators environment.

The topological and dynamical properties of the network are not taken into
account in the fitness criterion. However, these properties are studied a poste-
riori, after the evolutionary process. Topological and dynamical properties of
initial (before evolution) and evolved (after evolution) neural networks are com-
pared. Evolved individuals have better learning capacities than initial ones [50].
Another key result, at the topological level, is that the wiring cost is optimized by
the evolutionary process. Furthermore, the evolved network connectivity shows
a specific kind of modular organisation [51]. At the level of dynamics, the author
observes the emergence of gamma oscillations when a stimulus is presented to the
network [52]. Moreover, the difference between temporal assemblies activated
by two different stimuli appears at the spike timing level, but not in the spatial
composition (subsets of neurons) of the assembly [53]. All these properties are
coherent with experimental observations.
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5 Conclusion

Although far from being exhaustive, we have presented some neuroscience results
and introduced several computational models based on artificial neural networks
that have been able to explain some of these results. Computational models
present the possibility to validate or invalidate the functionality of hypothesis
suggested by experiments in neuroscience and neuro-imaging. In addition they
often suggest new hypotheses and new experiments. The models range from the
microscopic level, i.e. at the single neuron level, to the macroscopic level, i.e.
interactions between several cerebral structures. Other excellent examples can
be found in books such as [54] or [55].

Building specific neural networks for modelling experimental results on cogni-
tive processing or neural structures and dynamics in the brain is a very appealing
domain. We hope this short presentation of several models as case studies will
raise the interest of the atificial neural network community for the computational
neuroscience research area.
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une polarisation. J. Physiol. Pathol. Gen., pages 620–635, 1907.

[11] L. F. Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907).
Brain Res. Bull., 50(5-6):303–304, 1999.

[12] E. M. Izhikevich, J. A. Gally, and G. M. Edelman. Spike-timing dynamics of neuronal
groups. Cereb. Cortex, 14(8):933–944, 2004.

[13] E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans Neural
Netw, 155:1063–1070, 2004.

[14] W. Gerstner and J. L. van Hemmen. Associative memory in a network of ’spiking’ neurons.
Network: Computation in Neural Systems, 3(2):139–164, 1992.

376



[15] W. Gerstner and W. Kistler. Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, Cambridge UK, 2002.

[16] D. O. Hebb. The organisation of behaviour: a neurophysiological theory. Wiley, New
York, 1949.

[17] L. F. Abbott and S. B. Nelson. Synaptic plasticity - Taming the beast. Nature Neurosci.,
3:1178–1183, 2000.

[18] H. Markram and M. Tsodyks. Redistribution of synaptic efficacy between neocortical
pyramidal neurons. Nature, 382:807 – 810, 1996.

[19] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann. Regulation of synaptic efficacy
by coindence of postsynaptic APs and EPSPs. Science, 275:213–215, 1997.

[20] G.-Q. Bi and M.-M. Poo. Synaptic modifications in cultured hippocampal neurons: de-
pendence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci.,
18:10464–10472, 1998.

[21] A. Lazar, G. Pipa, and J. Triesch. Fading memory and time series prediction in recurrent
networks with different forms of plasticity. Neural Networks, 20(3):312–322, 2007.

[22] S. J. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system.
Nature, 381:520–522, 1996.

[23] S. J. Thorpe, R. Guyonneau, N. Guilbaud, J. M. Allegraud, and R. Vanrullen. Spikenet:
Real-time visual processing with one spike per neuron. Neurocomputing, 58-60:857–64,
2004.

[24] A. Treisman and G. Gelade. A feature integration theory of attention. Cognitive Psycho.,
12:97–136, 1980.

[25] A. Treisman. Solutions to the binding problem: Progress through controversy and con-
vergence. Neuron, 24:105–110, 1999.

[26] C. von der Malsburg. The correlation theory of brain function. Technical report, Max
Planck Institute for Biophysical Chemistry, Gottingen, Germany, 1981.

[27] C. von der Malsburg. The what and why of binding: The modeler’s perspective. Neuron,
24:95–104, 1999.

[28] A. K. Engel, P. König, and W. Singer. Direct physiological evidence for scene segmentation
by temporal coding. Proc. Nat. Aca. Sci. USA, 88:9136–9140, 1991.

[29] C. Tallon-Baudry, O. Bertrand, C. Wienbruch, B. Ross, and C. Pantev. Combined EEG
and MEG recordings of visual 40 hz responses to illusory triangles in human. Neuroreport,
8(5):1103–1107, 1997.

[30] M. Watanabe, K. Nakanishi, and K. Aihara. Solving the binding problem of the brain
with bi-directional functional connectivity. Neural Networks, 2001.

[31] D. J. Amit and N. Brunel. Model of global spontaneous activity and local structured
activity during delay periods in the cerebral cortex. Cerebral Cortex, 7:237–252, 1997.

[32] G. Mongillo, D. J. Amit, and N. Brunel. Retrospective and prospective persistent activity
induced by hebbian learning in a recurrent cortical network. Eur. J. Neurosci., 18:2011–
2024, 2003.

[33] K. Nakamura and K. Kubota. Mnemonic firing of neurons in the monkey temporal pole
during a visual recognition memory task. J. Neurophysiol., 74:162–178, 1995.

[34] S. L. Bressler and J. A. S. Kelso. Cortical coordination dynamics and cognition. Trends
Cog. Sci., 5(1):26–36, 2001.

[35] F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie. The brainweb : Phase syn-
chronization and large-scale integration. Nature Rev. Neurosci., 2:229–239, 2001.

[36] X.-J. Wang and G. Buzsaki. Gamma oscillation by synaptic inhibition in a hippocampal
interneuronal network model. J Neurosci, 16(20):6402–6413, 1996.

377



[37] M A. Whittington, R D. Traub, H J. Faulkner, I M. Stanford, and J G. R. Jefferys. Recur-
rent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations.
Proc. Natl. Acad. Sci. USA, 94:12198–12203, 1997.

[38] N. Kopell, G. B. Ermentrout, M. A. Whittington, and R. D. Traub. Gamma rhythms
and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA,
97(4):1867–1872, 2000.

[39] A. Bibbig, R. D. Traub, and M. A. Whittington. Long-range synchronization of and
oscillations and the plasticity of excitatory and inhibitory synapses: A network model. J.
Neurophysiol., 88(4):1634–1654, 2002.

[40] N. Brunel and X.-J. Wang. What determines the frequency of fast network oscillations
with irregular neural discharges? I. synaptic dynamics and excitation-inhibition balance.
J. Neurophysiol., 90:415–430, 2003.

[41] M. Bazhenov, M. Stopfer, M. Rabinovich, R. Huerta, H. D. I. Abarbanel, T. J. Sejnowski,
and G. Laurent. Model of transient synchronization in the locust antennal lobe. Neuron,
30:553–567, 2001.

[42] G. Laurent, M. Stopfer, R. Friedrich, M. I. Rabinovich, A. Volkovskii, and H D I Abar-
banel. Odor encoding as an active, dynamical process: Experiments, computation and
theory. Annu. Rev. Neurosci., 24(263-297), 2001.

[43] X.-J. Wang and J. Rinzel. Alternating and synchronous rhythms in reciprocally inhibitory
model neurons. Neural. Comput., 4:84–97, 1992.

[44] J. G. R. Jeffery, R. D. Traub, and M. A. Whittington. Neuronal networks for induced “
40 hz” rhythms. Trends Neurosci., 19:202–208, 1996.

[45] E. D. Lumer, G. M. Edelman, and G. Tononi. Neural dynamics in a model of the thalam-
ocortical system I. Layers, loops and the emergence of fast synchronous rhythms. Cereb.
Cortex, 7:207–227, 1997.

[46] E. D. Lumer, G. M. Edelman, and G. Tononi. Neural dynamics in a model of the thala-
mocortical system II. The role of neural synchrony tested through perturbations of spike
timings. Cereb. Cortex, 7:228–236, 1997.

[47] J. L. Krichmar and G. M. Edelman. Machine psychology: Autonomous behavior, percep-
tual categorization and conditioning in a brain-based device. Cereb. Cortex, 12:818–830,
2002.

[48] J. G. Fleischer, J. A. Gally, G. M. Edelman, and J. L. Krichmar. Retrospective and
prospective responses arising in a modeled hippocampus during maze navigation by a
brain-based device. Proc. Natl. Aca. Sci. USA, 104(9):3556–3561, 2007.

[49] D. Meunier. Une modélisation évolutionniste du liage temporel. PhD thesis, Université
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