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Abstract. In this paper we propose a novel approach for ensemble con-
struction based on the use of linear projections to achieve both accuracy
and diversity of individual classifiers. The proposed approach uses the
philosophy of boosting, putting more effort on difficult instances, but in-
stead of learning the classifier on a biased distribution of the training set
it uses misclassified instances to find a linear projection that favours their
correct classification. Supervised linear projections are used to find the
most suitable projection at each step of the creation of the ensemble. In
a previous work we validated this approach using non-linear projections.
In this work we show that linear projections can be used as well, with the
advantage of being simpler, more interpretable and faster to obtain.

The method is compared with AdaBoost, showing an improved perfor-
mance on a large set of 45 problems from the UCI Machine Learning
Repository.

1 Introduction

An ensemble of classifiers consists of a combination of different classifiers, homo-
geneous or heterogeneous, to jointly perform a classification task [1]. A classifica-
tion problem of K classes and n training observations consists of a set of instances
whose class membership is known. Let S = {(x1, y1), (x2, y2), . . . (xn, yn)} be a
set of n training samples where each instance xi belongs to a domain X . Each
label is an integer from the set Y = {1, . . . , L}. A multiclass classifier is a
function f : X → Y that maps an instance x ∈ X ⊂ RD onto an element of Y .

The task is to find a definition for the unknown function, f(x), given the
set of training instances. In a classifier ensemble framework we have a set of
classifiers C = {C1, C2, . . . , Cm}, each classifier performing a mapping of an
instance vector x ∈ RD onto the set of labels Y = {1, . . . , L}.

Boosting methods are the most popular techniques for constructing ensem-
bles of classifiers. Their popularity is mainly due to the success of AdaBoost.

∗This work has been partially funded by the project BU004B06 from the Consejeŕıa de
Educación de la Junta de Castilla y León (Spain).
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Boosting constructs an ensemble in a stepwise manner. At each step a new
classifier is added to the ensemble. The basic idea is that the new classifier
is trained on a distribution of the learning instances biased towards the most
difficult instances. In this way, each instance has an associated weight that is
higher if the instance has been misclassified by several of the previous classi-
fiers. AdaBoost tends to perform very well for some problems but can also
perform very poorly on other problems. One of the sources of the bad behaviour
of AdaBoost is that although it is always able to construct diverse ensembles,
in some problems the individual classifiers tend to have large training errors.
Moreover, AdaBoost usually performs poorly on noisy problems [2].

One of the sources of failure of boosting is putting to much stress on correctly
classifying all the instances. Outliers or noisy instances become too relevant in
the training set undermining the performance of the ensemble. In a previous
work [1] we constructed ensembles projecting the input variables in a way that
made easier the classification of misclassified instances. This projection was
performed using the hidden layer of a multilayer perceptron. In this paper we
show how we can use supervised linear projection methods to perform the same
task in an easier and faster way.

This approach is able to incorporate the advantages of boosting without its
main drawbacks. The construction of the projection taking into account only
instances that have been misclassified by a previous classifier permits the new
classifier to focus on difficult instances. Nevertheless, as this classifier receives
a uniform distribution of the training instances, the sensitivity to noise and the
effect of small datasets is greatly reduced. The proposed method at each step
t considers only the subset of instances, S′ ⊂ S, misclassified by the classifier
added in step t − 1. It uses the instances in S′ to obtain a linear projection
that is focused only on misclassified instances. The proposed method is shown
in Algorithm 1. The next section explains how the supervised linear projections
are obtained.

Data : A training set S = {(x1, y1), . . . , (xn, yn)}, a base learning
algorithm, L, and the number of iterations T .

Result : The final classifier: C∗(x) = argmaxy∈Y

∑
t:C(x)=y 1.

1 C0 = L(S)
for t = 1 to T − 1 do

2 S′ ⊂ S, S′ = {xi ∈ S : Ct−1(xi) �= yi}.
3 Obtain supervised linear projection P(x) using S′.
4 Ct = L(P(S))

end

Algorithm 1: Linear Projection Boosting algorithm.
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Fig. 1: PCA fails when the class labels are not used.

2 Linear Supervised Projections

One of the most used methods for linear projection is Principal Component
Analysis (PCA). PCA projects the data set onto the directions which explain
most of the variance in the data set. Assuming Gaussian distribution, these are
the directions with more information. For our methodology, the main drawback
of PCA is that it is an unsupervised technique and does not take into account the
class labels of the data set. PCA is more a method for efficient representation
rather than a method for efficient discrimination. A typical example where PCA
fails is shown in Figure 1. In such cases we need a supervised technique as Linear
Discriminant Analysis.

2.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was first used for two classes. It finds a
linear subspace that maximises the class separability. The objective is to find
a projection W that maximises the ratio of between-class scatter Sb against
within-class scatter Sw [3]. LDA has two important disadvantages: i) Gaussian
assumption over the class distribution of the data samples; and ii) the dimen-
sionality of the subspaces obtained is limited by the number of classes; for a L
classes data set, at most L − 1 dimensional.

2.2 Nonparametric Discriminant Analysis

Nonparametric Discriminant Analysis (NDA) is an alternative to LDA that
avoids its limitations. Fukunaga and Mantock [3] presented this nonparametric
technique illustrating it for the two class case. The formulation for the multiclass
case is as follows [4].
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where α is a control parameter between zero and infinity, Ni is the number of
instances in class i, d(x(i)

l , x
(j)
kNN) is the distance from x

(i)
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NDA has two disadvantages: i) Parameters k and α are usually decided by
rules of thumb. So the best result usually comes after several trials; and ii)
when the within-class scatter matrix in NDA is still in parametric form and the
training set size is small, NDA will have the singularity problem.

2.3 Regularisation

Since, in the previous methods, within scatter matrices have to be inverted in
order to calculate the linear projection, it is important that these matrices are
not singular (problem ill-posed) or close to singular (problem poorly posed). This
is usually the case for small data sizes and high dimensionality.

To overcome these problems we can use regularisation. In the experiments,
as a rule of thumb, whenever the size of the data set is smaller than four times
the dimension, we have applied the regularisation process proposed in [5]. The
new regularised version of within-class scatter matrix is

SR
w = αdiag(Sw) + β

trace(Sw)
d

I + γSw (4)

where d is the dimensionality of data, α, β and γ are mixing parameters with
0 ≤ α, β, γ ≤ 1 and α + β + γ = 1. In the experiments reported in this paper
α = β = γ = 0.33.

2.4 Hybrid Discriminant Analysis

Tian et al. present in [6] the Hybrid Discriminant Analysis (HDA) as a frame-
work that unifies PCA and LDA. The ratio to maximise in HDA is

argmax
W

∣∣∣WT
(
(1 − λ)Sb + λΣ̂

)
W

∣∣∣
|WT ((1 − η)Sw + ηI) W | (5)

where I the identity matrix and Σ̂ the covariance matrix. The combination of
values (λ = 0, η = 0) gives LDA. PCA can be obtained with values (λ = 1, η = 1).
For other values, equation (5) provides a set of alternatives between PCA and
LDA.

The main advantages of the method are: i) With values λ �= 0 the matrix
(1 − λ)Sb + λΣ̂ if full rank and HDA overcomes one of the limitations of LDA
and we are now not restricted to projections of L − 1 dimensions at most; and
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ii) with values η �= 0 we get a simple regularisation scheme which avoids the
singularity of (1 − η)Sw + ηI.

3 Experimental setup

For the assessment of the validity or our method we selected 45 datasets from
the UCI Machine Learning Repository. The experiments were conducted follow-
ing the 5x2 cross-validation set-up. Demšar [7] proposed several methodologies
to make comparisons among several methods. Following this paper we carry
out pairwise comparisons using a Wilcoxon test. This test is recommended be-
cause it was found to be the best one for comparing pairs of algorithms [7].
In the experiments we test AdaBoost algorithm against our approach, so our
comparisons are always paired.

4 Experiments

It is clear that the selection of the base learner may have a significant effect on
the results of the proposed method. Thus, we have studied the proposed model
using three different base learners: a multilayer neural network trained using
the standard back-propagation algorithm, the C4.5 algorithm, and a Support
Vector Machine with a Gaussian kernel.1 Table 1 shows the comparison of the
two methods based on linear projections (HDA and NDA) and AdaBoost.

C4.5 Neural nets SVM
HDA NDA HDA NDA HDA NDA

AdaBoost 31/14 30/15 30/15 29/16 29/16 31/13
0.0650 0.0405 0.0439 0.0633 0.0198 0.0007

Table 1: Comparison of AdaBoost and the proposed methods in terms of
testing error. Win/loss record and the p-value of Wilcoxon test are shown.

The results are illustrated in Figure 2. The figure represents for each point
the testing error of the standard method and ours. Points below the diagonal
line show a better performance of our method, and points above the diagonal
line show a better performance of AdaBoost. We can see that there are more
points below the diagonal, and also that the separation of these points from
the diagonal is larger. Table 1 shows that the differences are significant at a
confidence level of 90% for all the classifiers, and at a 95% for HDA for neural
networks and SVMs and for NDA for C4.5 and SVMs.

5 Conclusions

In this paper we have shown how we can construct ensembles of classifiers by
means of linear projections that are obtained using misclassified instances. The

1The SVM learning algorithm was programmed using functions from the LIBSVM library.
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Fig. 2: Comparison of testing error for AdaBoost method (x-axis) and the
proposed methodology (y-axis).

proposed methodology is able to significantly improve the performance of Ad-
aBoost algorithm in a large set of 45 problems and three different base learners.

As future research line, we are working on using the weights of the instances
given by boosting to construct the linear projections, instead of using only the
miss-classified instances. Another interesting line in which we are interested is
trying this technique for regression.
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