
Factored sequence kernels

Pierre Mahé and Nicola Cancedda ∗

Xerox Research Centre Europe
6, chemin de Maupertuis, 38240 Meylan - France

Abstract. In this paper we propose an extension of sequence kernels to
the case where the symbols that define the sequences have multiple rep-
resentations. This configuration occurs in natural language processing for
instance, where words can be characterized according to different linguistic
dimensions. The core of our contribution is to integrate early the differ-
ent representations in the kernel, in a way that generates rich composite
features defined across the various symbol dimensions.

1 Introduction

Recent years saw important developments in the field of kernel methods for com-
plex data with, in particular, the advent of kernels for structured objects such as
sequences, trees or graphs on the one hand, and advanced methods to combine
multiple and heterogeneous sources of information in a global kernel function
on the other hand. Combined with the family of so-called kernel methods, this
offers a versatile and powerful framework to apply machine learning techniques
to real-world problems [1]. In this paper we propose an extension of sequence
kernels [2] to the case where the symbols that define the sequences have multiple
representations. This configuration occurs in natural language processing for
instance, where words can be characterized according to different linguistic di-
mensions, often called factors [3, 4]. The novelty of our approach is to integrate
early the different factors in the kernel, in a way that generates rich composite
features defined across the various symbol representations. The paper is struc-
tured as follows. Section 2 briefly introduces sequence kernels and details our
kernel construction, Section 3 validates the approach on an artificial problem,
and Section 4 discusses future work.

2 Factored kernel

In this section, we introduce sequence kernels, define the notion of factored
representation, and detail our kernel formulation.

2.1 Sequence kernels

Let x be a sequence of |x| symbols drawn from an alphabet Σ. A subsequence
sx of length n is identified by a set of n symbol indices constrained to be strictly
increasing: sx = x[i], with i ∈ {1, |x|}n and i[1] < i[2] < · · · < i[n]. We let Sn(x)

∗This work was supported by the IST Programme of the European Community under the
SMART project, IST-2005-033917, and under the PASCAL Network of Excellence, IST-2002-
506778.

409

be the set of subsequences of size n associated to x, and we denote as g(sx) the
number of gaps contained in the subsequence sx

1. With this notation at hand,
we can state the following definition, upon which is based the rest of the paper.

Definition 1. For the pair of sequences x and y over an alphabet Σ, the gap-
weighted subsequence kernel of order n is defined as kn(x, y) = 〈φ(x), φ(y)〉,
where:

• φ(x) =
(
φu(x)

)
u∈Σn

• φu(x) =
∑

sx∈Sn(x) 1(sx = u)λg(sx)

The parameter λ is called the gap penalization factor. When it tends to
zero, any subsequence containing gaps gets so down-weighted that the kernel
boils down to counting the number of contiguous subsequences. When it is
increased, the penalization of gaps decreases, and for λ = 1, every subsequence
contributes equally to the kernel value, whatever its number of gaps is. This
kernel was initially introduced to compare sequences of characters [2] and was
later extended to compare sequences of words [5].

2.2 Factored representation and kernels combination

We now consider the case where the symbols that define the sequences can
be represented along several dimensions, that we call factors in the following.
Under this representation, a symbol u is formally defined as a tuple of p factors
{u(d)}d=1:p drawn each from a different alphabet Σd. A simple way to define a
kernel k on such multi-dimensional sequences is to resort to a linear combination
of individual kernels [6, 7]:

k(x, y) =
p∑

d=1

wdkn(x(d), y(d)), (1)

where x(d) denotes the d-th sequence of symbol factors associated to the sequence
x, kn is the kernel2 of Definition 1 and the weights wd ≥ 0 control the relative
contribution of the different factors in the global kernel. It is easy to see that
the kernel of Equation (1) can be written as a standard inner product k(x, y) =
〈φ(x), φ(y)〉, with:

• φ(x) =
(
φu(x)

)
u∈Σ

, with Σ =
⋃p

d=1(Σd)n,

• for a sequence u ∈ (Σd)n, φu(x) =
√

wd

∑
sx∈Sn(x(d)) 1(sx = u)λg(sx).

In other words, the linear combination of kernels has the basic effect of concate-
nating their associated feature spaces, which boils down in our case to repre-
senting a sequence by its subsequences that can be extracted along the different

1If sx = x[i] ∈ Sn(x), we have g(sx) = i[n] − i[1] − n + 1.
2For simplicity, we introduce a single kernel order n to compare the different sequences, but

one could use factor-specific orders n(d).

410

dimensions. Each dimension of the feature space is the (gap-penalized) num-
ber of corresponding subsequences, multiplied by a scaling factor reflecting the
introduction of weights in the linear combination.

2.3 Factored kernel definition

It is well known that the kernel of Definition 1 can equivalently be written in
the context of convolution kernels [8] as:

kn(x, y) =
∑

sx∈Sn(x)

∑

sy∈Sn(y)

1(sx = sy)λg(sx)λg(sy)

=
∑

sx∈Sn(x)

∑

sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

1(sx[i] = sy[i]).

Under this form, the kernel definition can considerably be enriched by the intro-
duction of an arbitrary kernel kΣ between sequence symbols:

k(x, y) =
∑

sx∈Sn(x)

∑

sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

kΣ(sx[i], sy[i]), (2)

This is known as the soft-matching extension of sequence kernels, and is known to
be valid provided the kernel kΣ is a proper kernel function [1]. To accommodate
factored representations, we propose to resort to this soft-matching formulation,
according to the following definition.

Definition 2. The factored kernel is defined as a soft-matching sequence kernel
(2), where for the pair of symbols (u, v) the kernel kΣ is defined as:

kΣ(u, v) =
p∑

d=1

wd1(u(d) = v(d)).

Soft-matching sequence kernels do not have an explicit interpretation in terms
of inner products and feature spaces. In our case however, we can state the
following proposition, whose proof is post-poned to the appendix.

Proposition 1. The factored kernel of Definition 2 can be written as a standard
inner product k(x, y) = 〈φ(x), φ(y)〉, where:

• φ(x) =
(
φu(x)

)
u∈Σ

, with Σ =
(p⋃

d=1

Σd

)n,

• for the (composite) sequence u ∈ Σf1(u) × · · · × Σfn(u), fi(u) ∈ {1, . . . , p},
we have φu(x) = w(u)

∑

sx∈S∗
n(x)

1(sx = u)λg(sx), where w(u) =
n∏

i=1

√
wfi(u)

and S∗
n(x) denotes the set of composite subsequences of x, defined as:

S∗
n(x) =

{
x(d)[i] = x(d1)[ii] . . . x(dn)[in],

i ∈ {1, . . . , |x|}n,d ∈ {1, . . . , p}n, i[1] < i[2] < · · · < i[n]
}
.

411

In comparison with the linear combination of kernels, the key feature of this
factored integration is therefore the ability to detect composite subsequences
in which symbols are drawn from the union of the individual alphabets Σ =⋃p

d=1 Σd. Intuitively, the factored kernel can be seen as i) merging the individual
alphabets into a global alphabet, and ii) counting the resulting composite sub-
sequences in the factored representation. On the other hand, linearly combining
the kernels corresponds to i) counting subsequences in the different dimensions,
and ii) merging the resulting feature vectors. In both cases, albeit in a different
way, the weight parameters wd allow to control the relative contribution of the
different factors in the feature space. As an interesting by-product, the factored
integration can be seen to be slightly more efficient from the computational point
of view. Indeed, while the linear combination of kernel basically multiplies the
initial complexity by a factor p, leading to an overall complexity of O(np|x|y|),
the soft-matching extension has the same O(n|x|y|) complexity as the hard-
matching one, provided the symbol similarity measure is computed in advance.
The complete kΣ Gram matrix would in our case be of size (|Σ1||Σ2| . . . |Σp|)2,
and in many cases it would be highly impractical to pre-compute it and to store
it in memory. Computing it ”on the fly” adds an extra step of O(p|x||y|) to the
kernel evaluation, leading to an overall complexity of O

(
(n + p)|x||y|).

3 Experimental results

To validate the kernel construction, we consider a simple task aiming to distin-
guish ”good” and ”bad” word sequences [5], where ”good” sequences are typical
sentences, and ”bad” sequences are disrupted sentences, in which pairs of consec-
utive words are swapped with probability 0.16. We use a tridimensional factored
representation where a word is represented by its surface form, its lemma and
its part of speech (POS). Albeit artificial, this problem can be seen to be rele-
vant to the field of Statistical Machine Translation where word misorderings are
important to detect. We consider training and test sets of respectively 5000 and
2000 sentences extracted from the Europarl corpus3 and use the python package
PyML4 to perform SVM classification. The soft margin parameter of the SVM
is systematically optimized by cross validation on the training set, and we report
classification accuracy on the test set.

Table 1 shows the result obtained by kernels computed independently on the
different representations of the sentences, for varying n and λ. For lack of space
we do not go into a detailed analysis of these results, but we note that i) optimal
results are systematically obtained for n = 2 and λ = 0.001, and ii) POS signifi-
cantly outperform surface forms and lemmas. Table 2 show the results obtained
by the linear combination of individual kernels (1st line) and the factored kernel
(2nd line) for different weight vectors. In both cases, n = 2 and λ = 0.001, but
the weights used in the factored kernel are set to the square root of the weights
used in the linear combination. This configuration aims to give an identical

3http://www.statmt.org/europarl
4http://pyml.sourceforge.net

412

n = 2 n = 3 n = 4

λ 0.001 0.1 0.5 1.0 0.001 0.1 0.5 1.0 0.001 0.1 0.5 1.0

surface 85.1 84.3 80.1 56.1 73.0 73.1 72.0 58.1 65.1 64.5 63.7 57.0
lemma 85.6 85.0 79.3 56.3 73.9 73.6 73.0 58.5 65.1 64.7 64.7 57.6

pos 89.7 89.6 85.1 63.9 88.1 88.3 87.8 69.3 85.5 86.7 87.5 74.5

Table 1: Test set accuracy obtained with individual word-sequence kernels.

weight vector w [1 1 1] [1 1 2] [1 1 5] [1 1 10] [1 2 5]

combined kernel (1) 89.9 90.3 90.9 91.2 90.3
factored kernel (2) 91.6 91.6 92.1 91.9 91.6

Table 2: Test set accuracy obtained by the linear combination of kernels (1) and
the factored kernel (2), w = [wsurf wlem wpos].

weight to the features that are present in both configurations: the subsequences
drawn from a single alphabet5. For lack of space, we simply note that i) linearly
combining individual kernel indeed improves the best result that can be obtained
on separated factors, and ii) the factored integration further improves over the
linearly combined kernel. These preliminary experiments therefore account for
the benefit of being able to consider composite subsequences.

4 Conclusion

In this paper, we have presented a simple kernel between multi-dimensional se-
quences having the key feature of defining composite subsequences. Factored
representations are gaining popularity in the field of natural language process-
ing, where they offer the possibility to introduce grammatical information in
language models [3] and statistical machine translation systems [4] for instance.
By their ability to leverage linguistic resources in a global and systematic way,
we believe that factored kernels can constitute powerful tools in this context,
and we are now working toward their integration in (discriminative) language
models. Another direction we are taking consists in extending this framework to
the integration of linguistic ressources having a higher level of complexity, such
as morphological and semantic features.

Appendix - proof of Proposition 1

We detail the feature space interpretation of the factored kernel:

k(x, y) =
∑

sx∈Sn(x)

∑

sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

p∑

d=1

wd1(s(d)
x [i] = s(d)

y [i]).

5Recall from Section 2 that sequences drawn from Σd are given a weight of
√

wd in the
linear combination of kernels, and

Qn
i=1

√
wd in the factored kernel.

413

A simple distributivity argument allows to permute the d-summation and the
i-product, by means of a vector of factor indices d = [d1, . . . , dn] ∈ {1, p}n:

k(x, y) =
∑

sx∈Sn(x)

∑

sy∈Sn(y)

λg(sx)+g(sy)
∑

d

n∏

i=1

wdi1(s(di)
x [i] = s(di)

y [i]).

The product of binary functions between individual word factors can then be
replaced by a binary function between sequences of word factors:

k(x, y) =
∑

sx∈Sn(x)

∑

sy∈Sn(y)

λg(sx)+g(sy)
∑

d

w(d)1(s(d)
x = s(d)

y),

with w(d) =
∏n

d=1 wdi . Using the notion of composite subsequence introduced in
Proposition 1, the summation over the vector d of word factors can be included
in the summation over pairs of subsequences:

k(x, y) =
∑

sx∈S∗
n(x)

∑

sy∈S∗
n(y)

λg(sx)+g(sy)w(sx)1(sx = sy), (3)

where for sx = x(d)[i] ∈ S∗
n(x) and sy = y(d′)[i′] ∈ S∗

n(y), 1(sx = sy) = 1
iff d = d′ and x(dk)[ik] = y(dk)[i′k] for k = 1, . . . , n ; and w(sx) =

∏n
i=1 wdi .

Finally, because 1(sx = sy) = 1 implies w(sx) = w(sy), the kernel of Equation
(3) can be written as a standard inner product k(x, y) = 〈φ(x), φ(y)〉, where
φ(x) = (φu(x))u∈Σ with Σ = (

⋃p
d=1 Σd)

n, the set of all possible composite
sequences of length n, and φu(x) =

∑
sx∈S∗

n(x) 1(sx = u)λg(sx)
√

w(sx).
The proof is concluded by noting that for u ∈ ∏n

i=1 Σfi(u) and sx = x(d)[i],
the equality 1(sx = u) = 1 implies di = fi(u) for i = 1, . . . , n, and therefore
w(sx) =

∏n
i=1 wdi =

∏n
i=1 wfi(u).

References

[1] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[2] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. J. Mach. Learn. Res., 2:419–444, 2002.

[3] J. A. Bilmes and K. Kirchhoff. Factored language models and generalized parallel backoff.
In NAACL ’03, pages 4–6, 2003.

[4] P. Koehn and H. Hoang. Factored translation model. In EMNLP’07, pages 868–876, 2007.

[5] N. Cancedda, E. Gaussier, C. Goutte, and J.-M. Renders. Word-sequence kernels. J. Mach.
Learn. Res., 3:1059–1082, 2003.

[6] G.R.G Lanckriet, N. Cristianini, M.I Jordan, and W.S Noble. Kernel-based integration of
genomic data using semidefinite programming. In B. Schölkopf, K. Tsuda, and J.P. Vert,
editors, Kernel Methods in Computational Biology, pages 231–259. MIT Press, 2004.

[7] C. Giuliano, A. Gliozzo, and C. Strapparava. Syntagmatic kernels: a word sense disam-
biguation case study. In EACL’06 - Workshop on Learning Structured Information in
Natural Language Applications, 2006.

[8] D. Haussler. Convolution Kernels on Discrete Structures. Technical Report UCSC-CRL-
99-10, UC Santa Cruz, 1999.

414

