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Abstract. The analysis of spectral data constitutes new challenges for machine
learning algorithms due to the functional nature of the data. Special attéstion
paid to the metric used in the analysis. Recently, a prototype based algoatm h
been proposed which allows the integration of a full adaptive matrix in theane

In this contribution we study this approach with respect to band matricegsand
use for the analysis of functional spectral data. The method is testeatanatken

from food chemistry and satellite image data.
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1 Introduction

The analysis of high dimensional functional data is a comtask in different fields of
natural sciences like medicine and chemistry. Promineaingtes are mass spectrom-
etry data (MS) in the field of clinical proteomics, nucleargnatic resonance spectra
(NMR) in the field of chemistry and metabolomics or spectrahgery acquired by
satellites to name just a few. Focusing on classificatiootopype based classification
approaches such as Learning Vector Quantization (LVQ) asgsed by Kohonen [6]
or multiple extensions [3, 8] have already proven to be \Vakifor the analysis of high
dimensional data (see [9, 10]). Due to the complexity of thendhe use of an appro-
priate distance measure is of special importance [13] tagetdequate representation
of the data. So-called relevance learning techniques f2hel e.g. the Euclidean dis-
tance, with weight factors for the different dimensionsgéther with the prototypes
these factors are optimized with respect to the given dleasbn task during train-
ing. This allows to scale the axes of the coordinate systethenflata space in order
to obtain better adaptation towards clusters with axealighellipsoidal shapes. But
this approach ignores correlative effects between diffiefeatures in general. The re-
cently introduced Generalized Matrix LVQ (GMLVQ) [1, 11] a&gts a full matrix of
relevance factors in the distance measure. This accounfsgafwise correlations of
features and ellipsoidal clusters which are not axes hredin be obtained. Yet, full
adaptive GMLVQ may suffer from the presence of too many adhle parameters as
their number grows quadratically with the dimensions ofuinpThis can lead to in-
stabilities and overfitting. In spectral data the order effimatures is not arbitrary and
usually local correlations between neighbored dimensimesir. Due to this property,
the restriction of GMLVQ to the adaptation of band-limitedtrices appears to be nat-
ural for the analysis of this kind of data. Hence, the numliére® parameters can be
reduced without limiting the performance of the algorithigngficantly. In this paper
we analyze this modification of GMLVQ on two different spattdata sets coming
from food chemistry studies and satellite remote sensing.
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2 Generalized Matrix LVQ

LVQ aims at parameterizing a classification scheme in terfrmatotypes. Assume
training data(¢;,y;) € RY x {1,...,C} are given,N denoting the data dimension-
ality andC' the number of different classes. An LVQ network consists nfimber of
prototypes which are characterized by their location inviegght spacev; € R and
their class labet(w;) € {1,...,C}. Classification takes place by a winner takes all
scheme. For this purpose, a (possibly parameterized)asitgilmeasurel” is defined
in RY. Often, the standard Euclidean metric is chosen. A data ganR” is mapped
to the class labet(¢) = c(w;) of the prototypei for which d*(w;, &) < d*(w;, &)
holds for every; # i (breaking ties arbitrarily).

Learning aims at determining weight locations for the piyges such that the
given training data are mapped to their corresponding dizsls. A very flexible
learning approach has been introduced in [4]. It is deried minimization of the cost
function

A A

S () @

- dj +dyx

where @ is a monotonic function, e.g. the identity or the logistimidtion, d} =
d*(wy,&;) is the distance of data poigi from the closest prototype ; with the same
class labely;, andd}( = dMwg,&;) is the distance from the closest prototywe,
with a different class label thag. Taking derivatives with respect to the prototypes
and metric parameters yields gradient based adaptatien.rilhe choice of the sim-
ilarity measure as standard Euclidean metric yields GLV]Q The squaredveighted
Euclidean metrid* (w, &) = > Ai(w; —&;)? where); > 0 and)_. \; = 1 constitutes
a powerful alternative, GRLVQ [5], particularly suitablerthigh dimensional data with

input dimensions of different (but a priori unknown) relega. In GMLVQ, a full ma-
trix which can account for pairwise correlations of the disiens, is used. The metric

has the form
dMw,&) = (E-w)T A —w)

whereA is an N x N matrix. The above similarity measure only corresponds to a
meaningful distance i\ is positive (semi-) definite. We can achieve this by sulistitu
ing A = QQT. Without loss of generality we consider only symmetkic We can
furthermore assume thét itself is symmetric as the (unique) symmetric square root
of A = Q? always exists. To obtain the adaptation formulas we neednapate the
derivatives of (1) with respect t& and(2. We get the updates

Awy = +er- ¢ (u()) - n™(€) - QQ- (€ —wy)

Awgc = — e ¢/ (1)) - () - Q- (€~ w)

AQp = —€2-¢'(u(8)) -

<M+(§) : ([Q(g - WJ)]'rrL(El - wJ,l) + [Q(E - WJ)]I(Em - wJ,m))

—pu (&) - ([Q(f — Wi)|m (& — wip) + [QUE—wWi)]1(§m — wK,m)))

for the prototypes and matrix elemerfts,, with u(¢) = (4 — d&)/(dy + d%),
Pt = 2 dy/(d) + dy)? andp (§) = 2 - d}/(d) + di)*. (See [1] for the
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Fig. 1: Left: Multiple spectra of both classes taken from the Tecator data set. Rightage
spectra of all classes of the satellite data set. The class labels are indigdtédrent point sym-
bols. e Alfalfa, ¥ Soil, % Corn,Hll Oats,¢ Red Clover.« Rye,» Soybeansa Water, * Wheat1,
+ Wheat2

derivation of these formulas.) Thereby, the learning ratettie metric can be chosen
independently of that for the prototypes. Note that the tgpgeeserves the symmetry
of ). After each update is normalized to prevent the algorithm from degeneration.
We set) ", A;; = Zm. ij = 1 which fixes the sum of diagonal elements and, thus,
the sum of eigenvalues of.

Band-limited GMLVQ can be achieved by limiting the numbernain-zero adjacent
diagonals in2 or A, respectively. Ifk adjacent diagonals above and below the main
diagonal are considered {n the respective bandwidth including the main diagonal is
givenasn = 2 - k+ 1in A. We refer to this as GMLVQ:. This restriction leads to

a focus on locally correlated frequency bands in spectral. dehe parameter should

be in correspondence to the correlation range in the spedtiah is problem specific.
Note that GMLVQ-1 corresponds to GRLVQ.

3 Data

We test the approach using the Tecator benchmark data sehwsiavailable at
http://lib.stat.cmu.edu/datasets/tecator. It cont&hS infrared absorption spectra of
meat samples. Each spectrum has been measured at 100 \g#velmnging from
850nm to 1050nm. The classification task consists in the prediction of theaby fat
content (low/high) of the probes. Figure 1 (left) visuatizeveral example spectra of
both classes. Apart from a tendency towards dints arounanetal for high fat con-
tent, a substantial overlap of the classes is evident.

Furthermore, the algorithm is applied to the Flightline Gitadset obtained form [7]
which contains 12-band multispectral gray-value data.as$ vaken by an M7-scanner
over Tippecanoe Country, Indiana and discriminates betvi®edifferent classes (Al-
falfa, Soil, Corn, Oats, Red Clover, Rye, Soybeans, Watereatlh Wheat2). The
spectral window 0.4m to 1.0um covers the visible - near-infrared range. The visi-
ble range mainly judges leaf pigments (chlorophyll) anditifeared range is mostly
responsible for cell structures (spongy-mesophyll cell)e data set is splitted into
11451 samples for training and 70549 samples for testirgureil (right) depicts the
mean spectra of the different classes. A more detailed igpiscrof the data is available
in [7].

453



ESANN'2008 proceedings, European Symposium on
Artificial Neural Networks - Advances in Computational Intelligence and Learning
Bruges (Belgium), 23-25 April 2008, d-side publi., ISBN 2-930307-08-0.

4 Experimentsand Results

We apply the proposed modification of GMLVQ with differentiolavidth settings and
compare the classification performance to known resulentdérm [7, 12]. The fol-
lowing statements hold for both data sets: the samples ameatiaed to zero mean and
unit variance in each feature and we employ one prototypelpss respectively. The
learning rates are continuously reduced in the course ioiiriga The initial values are
settoe; = 5-1073,e; = 5 - 10~ (Tecator data) and, = 0.01,¢; = 10~* (satellite
data). We use the same learning rate schedule as in [1]anith10~. Pretraining
with simple GLVQ is mandatory in all experiments. Becausé¢hef small number of
samples contained in the Tecator data set, the spectrardit®opad randomly intat/5
samples for training antl/5 patterns for testing averaged irbdold cross validation.
Figure 2 and Table 1 summarize the obtained classificatiouracies. We observe that
adapting only a small number of bands in the relevance migtigxfficient to clearly
improve the classification performance compared to GRLVIE [Barning curves for
the satellite data depict a clear gap between the accurabtamed with the settings
k = 0 andk = 1. Furthermore, we can conclude that the number of bands daede
obtain the performance of GMLVQ is rather small comparechtedimension of the
input data. We find the bandwidths of= 21 for the Tecator data set amd= 5 for
the satellite data set to be sufficient to achieve this pevémce. Adding further bands
yields no significant benefit for the classification any mokecordingly, correlations
between features far apart in the sequence of all featurebe#gnored without con-
straining the performance of the GMLVQ-algorithm signifidg. Thus the number of
free parameters can be reduced, efficiently. It is interggth note, however, that the
learning curves indicate that the system needs more trpgpochs to reach the same
performance for smafll in case of high input dimensionality (Tecator data).

Figure 3 visualizes the relevance matrices obtained by G®IAvid GMLVQ-21 on the
Tecator data set. The diagonal elements of the full matfigeethat the region around
feature 41 is ranked highest. The most relevant range @pthe indices 30 to 50.
This conforms to the visual impression given in Figure 1 dredgdroperty of local cor-
relations in spectral data. Accordingly, off-diagonalremts which are significantly
different from zero are detected only in the neighborhoothefmain diagonal around
index 41. Consequently, the restricted band matrix in GME¥DJis adequate to repre-
sent the meaningful structure in the data appropriatelytamathieve the classification
performance of GMLVQ.

Our findings for the satellite data are in good agreement wiithr results published
in [7]. The accuracies on the test data given in [7] are digbetter & 5% — 7%)
than our best results. However, the complex feature selesttheme used in [7] im-
plies a lot more computation effort to achieve this perfanoea Further it should be
mentioned that this feature selection is not an inherenigbéne classifier method. The
detailed stepsin [7], p. 179 suggest that a potential bilsnespect to the feature selec
tion could have effected these results. Therefore the mddtidependent experimental
settings given here and in [7] are slightly different, coitging direct comparisons.
Considering the results including the expert knowledge7inapout relevant spectral
bands for vegetation discrimination, interesting findimgs be made. In particular
both visible and infrared frequencies contribute to thaiiieation. A bandwidth of 5
in the given data set comprises at least parts of the visitdenaar-infrared spectrum.
Therefore the respective correlations are taken into adc@maller bandwidths lead to
a loss of this correlation information, whereas larger pabsve 5, give no significant
information gain. For this optimum 5-band case the expantmeas repeated using 5
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prototypes per class. We achieved a prediction of 86.4% wisicomparable to the
result given in [7] with 91% using only 4 features. This sétatwas done such that
the features are almost independent, but covering visitddard#rared frequencies. The
main diagonal elements of matrix (relevance profile), reflect that red and infrared
frequencies are especially relevant for the classificafitiis underlies the above men-
tioned features of chloro- and mesophyll level for vegetatiiscrimination.

Tecator Satellite
Algorithm Prediction || Algorithm Prediction
GMLVQ-1 66.7% GMLVQ-1 78.5%
GMLVQ-3 66.7% GMLVQ-3 82.9%
GMLVQ-11 84.3% GMLVQ-5 86.2%
GMLVQ-21 97.1% GMLVQ-7 86.3%
GMLVQ-31 97.1% GMLVQ-9 86.6%
GMLVQ-41 96.7% GMLVQ-11 86.4%
GMLVQ-F 95.7% GMLVQ-F 86.6%
SVM-RBF 68.9% SVM-RBF 70.7%
SVM-Lin 73.3% SVM-Lin 85.3%
C-GRLVQ 97% C-GRLVQ n.a.

Table 1: Classification accuracies achieved on the Tecator- and the satellite dasinggdiffer-
ent bandwidth settings for GMLV@-(1 to F-full) in comparison to correlation based GRLVQ
(C-GRLVQ) with 20 prototypes [12] and two types of a SVM (Lin-linear, RBF-radial basisfu
tion kernel) obtained using Yale (http://yale.cs.uni-dortmund.de)
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Fig. 2: Prediction accuracies as a function of training time for both data sets usitrices of
different bandwidths. Left: Tecator data set (matrix adaptation stads 20 epochs). Right:
Satellite data set (matrix adaptation starts after 10 epochs).

5 Conclusion

In this article band-limited GMLVQ has been investigateddiassification of spectral
data. For both considered data sets we observe an overativenpent in prediction,
compared to simple GRLVQ. The improvement is the same agasthby unrestricted
GMLVQ. However band-limitation can be applied succesgfulithout significant in-
formation loss. The obtained optimum bandwidths can beudissd in the light of
spectra properties of the underlying problems. Thus bamitdithg can be used to re-
duce the number of adjustable parameters of standard GMb\iQprove the stability.
These findings may carry over to other kinds of spectral dath &s mass spectra
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Fig. 3: Visualization of the relevance matrices obtained by GMLVQ (left) and GM{2Aright)
on the Tecator data set. The diagonals are set to zero in the off-digy@saintations.

(MS) or lon Mobility Spectroscopy (IMS) which is an importaamnalysis technique in
chemistry and the field of security. In our experiments wesatered only the effect of
symmetric correlations between neighbored features wdiffeyent bandwidths. This
maybe not always optimal with respect to the underlying dataacteristics. In future
work also more generic correlation scenarios will be aredyz
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