
An FPGA-based Model suitable for Evolution
and Development of Spiking Neural Networks

Hooman Shayani1, Peter J. Bentley1, and Andrew M. Tyrrell2

1 UCL, Dept of Computer Science, WC1E 6BT - UK
2 University of York, Dept of Electronics, York - UK

Abstract. We propose a digital neuron model suitable for evolving
and growing heterogeneous spiking neural networks on FPGAs using a
piecewise linear approximation of the Quadratic Integrate and Fire (QIF)
model. A network of 161 neurons and 1610 synapses with 4210 times real-
time neuron simulation speed was simulated and synthesized for a Virtex-5
chip.

1 Introduction

The evolution of directly mapped recurrent spiking neural networks on FPGAs
has been tackled by a few researchers (e.g. [1, 2]) using very simplified versions
of the Leaky Integrate and Fire model (LIF) [3]. Recently, Schrauwen et. al [4]
proposed a high-speed spiking neuron model for FPGA implementation based on
the LIF model with serial arithmetic and parallel processing of the synapses util-
ising pipelining in a binary tree for dendrites. Researchers have sought to create
POE (Phylogeny, Ontogeny, Epigenesis) neural networks capable of evolving, de-
veloping (growth) and learning in situ to adapt themselves to the given problem
and environment (e.g. POEtic chip [5]). However, as yet none of these digital
neuron models are quite suitable for an online developmental model [1] capable
of regeneration and growth (Morphogenesis) on FPGA. They are typically either
limited in terms of number of inputs per neuron or impose constraints on the
patterns of connectivity and/or placement on the actual chip mostly due to im-
plementation issues. They also do not allow a heterogeneous networks of flexible
parametric neurons and learning rules as important bio-plausible features.

This paper proposes a digital spiking neuron model suitable for developmen-
tal evolution of heterogeneous recurrent neural networks on FPGAs aiming at:
flexibility, development-friendliness, high simulation and learning speeds, paral-
lelism, and bio-plausibility, while having hardware implementation in mind.

2 Digital Neuron Model

To improve the performance of evolution, the developmental digital neuron
model should be as flexible as possible, for any constraint may impair evolv-
ability. Evolution must be able to modify everything from network topology
and dendrite structures to learning rules, membrane decay constants and other
cell parameters and processes. Evolution should be also free to create a suitable
neuro-coding technique for each application. Therefore, the network activity is
not guaranteed to be restricted as assumed in event-based simulation of spiking

197

Syn.

Syn.

Syn.

Soma
Axon

P
re

sy
na

pt
ic

 In
pu

ts

Syn

Soma

3
4

1
Axon

2

6

7

5

Syn

Syn

Syn

Syn

Syn

Syn

Axon

1

3
4 5

7

62

Cut
point

W

Control
Unit

0 1 D

0

0 1

DD

DSI

USI

Spike
Input

USO

DSO

En

Fig. 1: a) General architecture of the digital neuron (Syn=synapse) b) Example
of the dendrite structure and its adaptability (c) Synapse unit architecture.

neural networks [4]. Thus, a time-step simulation technique is used here. This
model also needs to be relatively fast as running a POE system [5] involves iter-
ative nested cycles of evolution, development and learning. Such a fast parallel
spiking neural network on FPGA can also be used for real-time applications.

In the proposed model, each digital neuron consists of a set of synapse units
and a soma unit connected in a daisy chain architecture shown in figure 1(a).
The spike input of each synapse is connected to the axon of the pre-synaptic
neuron. This architecture creates a 2-way communication channel and allows
the development of different dendrite structures as demonstrated in the exam-
ple of figure 1(b). The signal pairs that connect the units forms a loop that
conveys data packets (a start bit and 16 data bits). The soma unit sends an up-
stream packet containing the current membrane potential on its upstream output
(USO). Synapse units pass upstream packets unchanged but process downstream
packets. If a synapse unit receives a pre-synaptic action potential it adds (sub-
tracts) its synaptic weight to the first arriving downstream packet. Therefore,
the soma unit receives the sum of membrane potential and post-synaptic cur-
rents in its downstream input (DSI). After processing this packet, the soma unit
sends another packet with the updated membrane potential. Serial arithmetic
is used in all the units to create pipelined parallel processing inside each neu-
ron, meaning that neighbouring units process different bits of the same packet
at the same time. Using this architecture has a number of collective benefits.
First, a 2-way communication channel makes it possible to have a local synaptic
plasticity mechanism in each synapse leading to a higher level of parallelism.
Most of the bio-plausible unsupervised learning mechanisms like STDP and its
variants involve a local learning process in each synapse. Secondly, it minimizes
the number of local and global connections, which leads to a significant relax-
ation of constraints imposed upon the network architecture as limited routing
resources is the major constraint in optimal utilization of FPGA functional re-
sources. Each unit needs only a global clock signal to work. Another global
signal can be added for a global supervised learning mechanism. Although other
architectures may bring about less pipeline latency, they need more local and

198

global connections. For instance, a binary tree structure similar to [4] needs
about double the number of local connections including the upstream links (ex-
cluding the global control signals). Third, it allows to develop any dendrite
structure similar to biological dendrites. The user is free to trim (add) dendrite
sub-trees at any point simply by cutting (connecting) a (pair of) connection(s)
and bypassing (inserting) the root unit of the sub-tree as shown by the dashed
lines in figure 1(b). This can be implemented in FPGA using multiplexers or
other routing resources (The detail is beyond this paper). This flexibility is vital
for a developmental model that needs on-line growth and modification. Fourth,
it maintains the regularity of the model by limiting the diversity of the module
types (synapse and soma units) and connection types (dendrites, axons) to a
biologically plausible bare minimum. This simplifies the place and route or dy-
namic reconfiguration process if a regular infrastructure of cells and connections
(similar to [6]) is used. Finally, it is possible to add other variables to the data
packet (e.g. the membrane recovery variable in the Izhikevich model [3]).

2.1 The Synapse Unit

The synapse unit, shown in figure 1(c), comprises a 1-bit adder, a shift register
containing the synaptic weight, two pipeline flip-flops, and a control unit. The
upstream input (USI) is simply directed to the upstream output (USO) through
a pipeline flip-flop. The control unit disables the adder and weight register
when no spike has arrived by redirecting the downstream input (DSI) to the
downstream output (DSO) through another pipeline flip-flop. When the control
unit detects a spike, it waits for the next packet and resets the carry flip-flop
of the adder when it receives the start bit. Then it enables the shift register
and the adder until the whole packet is processed. A learning block can be
simply inserted into the feedback loop of the weight register in order to realize
an unsupervised local learning mechanism like STDP. This learning block can
access the current membrane potential and the input. It is also possible to
modify the synapse to create a digital DC current input unit by loading the DC
current into the weight register.

2.2 The Soma Unit (PLAQIF model)

Most of the hardware models are based on the LIF [3] or simplified LIF neuron
models [1, 2]. However, a Quadratic Integrate and Fire neuron model (QIF)
is biologically more plausible compared to the popular LIF model [3]. Here, a
Piecewise-Linear Approximation of the Quadratic Integrate and Fire (PLAQIF)
is proposed as a new soma model. Using a PLAQIF model has a number of
benefits in our context. While it is relatively inexpensive (in terms of hard-
ware resources) to convert a serial arithmetic implementation of a LIF neuron
model into a PLAQIF model (as shown later), PLAQIF model can generate a
bio-plausible action potential. This is particularly important as we use the mem-
brane voltage in the learning process. Moreover, the Behaviour of the model can
be specified with a number of parameters (i.e. time constants and reset poten-

199

tial). These parameters can be placed in registers and look-up-tables (LUT)
to be modified at run-time (e.g. by partial dynamic reconfiguration) or can be
hard-wired for hardware minimization. Finally, it is easy to extend this model
to a piecewise-linear approximation of Izhikevich model (with a wide range of
bio-plausible behaviours e.g. bursting, chattering, and resonating [3]) by adding
another variable, if hardware budget permits. The dynamics of the QIF model
can be described by a differential equation and reset condition of the form [3]:

u̇ = a(u− ur)(u− ut) + I , if u ≥ upeak then u← ureset (1)

where u is membrane voltage, a is specifying the time-constant, I is the post-
synaptic input current, and the ur and ut are nominal resting and threshold
voltages respectively, when I = 0. Note that in contrast with LIF models, the
actual resting and threshold voltages are dynamic and they change with the in-
put current I [3]. Applying first-order Euler method results in an equation of
general form:

uk+1 = uk+a(uk−ur)(uk−ut)+Ik , if uk+1 ≥ upeak, then uk+1 ← ureset (2)

where k is the step number. The PLAQIF model is based on the serial arithmetic
implementation of a LIF model with equation uk+1 = uk + I − auk (for a < 1)
with a little modification. The last term can be approximated using two taps:

uk+1 = uk + Ik +
⌊

uk

P1

⌋
︸ ︷︷ ︸
Tap 1

+
⌊

uk

P2

⌋
︸ ︷︷ ︸
Tap 2

(3)

where Pi = (−1)si · 2pi with pi and si being the parameters of ith tap. Each
tap is computed by adding (or subtracting depending on si) the shifted version
(arithmetic shift right by pi bits) of the binary representation of uk. By replacing
the sign bit (S) and the most significant bit (MSB) of uk with the complement of
MSB we can produce the piecewise linear function V (uk) = |uk| − 214 (assuming
a 16-bit representation). This function is shown in figure 2(a) as the V-shape
function. By tapping (modulating) V (uk) with different parameters (pi,0 . . . pi,3

and si,0 . . . si,3) for different combinations of S and MSB (positive or negative,
small or large values of uk) we get:

uk+1 = uk + Ik +
⌊

V (uk)
P1(uk)

⌋
+

⌊
V (uk)
P2(uk)

⌋
(4)

where Pi(x) = (−1)si,j · 2pi,j , j =
⌈ x

214

⌉
+ 1 (5)

It is possible to approximate eq. 2 with eq. 4 by tuning the parameters pi,j and
si,j as shown in figure 2(a). The soma unit, showed in figure 2(b), comprises a
1-bit adder, a 32-bit buffer shift register (holding the partial sums from the last
cycle), a 16-bit shift register (holding reset voltage ureset), a lookup-table (LUT,
a 8x5 bits RAM, which holds the parameters pi,j and si,j), a control unit (CU,

200

y=V(x)

PLAQIF

QIF

x

y(a)

0

1

DSI

Control
Unit

Param.
LUT

MSB
Extension

USO

MSB

Sign

0

1

Tap

Axon

D

4

Reset
Voltage

Buffer

MUX

DD

Sub

Packet
Generation

Peak
Detection

S MSB

Tap

Tap

Fig. 2: (a) The PLAQIF model approximates the QIF model (the dotted curve)
with a piecewise linear function by modulating the V-shape function V (x). The
control points (arrows) can be moved by tuning the parameters. (b) Soma unit

which detects the arriving packet and generates all the control signals e.g. Tap,
ShiftEn, etc.), and a few multiplexers. The soma unit initiates a data packet
thorough USO and waits for a packet on DSI input. At this point, the buffer
holds the value uk in its left half and S and MSB flip-flops hold the sign and most
significant bit of uk. The LUT selects the correct shifted version (according to S
and MSB) of uk through the multiplexer and has its first bit ready on the input
of the adder. The first tap starts with receiving a packet. An arriving packet,
which contains the value uk + Ik goes to the other input of the adder. The
LUT also selects the add or subtract operation in each tap(si). As the operation
goes on, the MSB extension block switches the multiplexer to MSB at the right
time to generate the value

⌊
V (uk)
P1(uk)

⌋
on the input of the adder. Therefore, the

new value of uk + Ik +
⌊

V (uk)
P1(uk)

⌋
shifts into the buffer through a multiplexer.

The second tap starts immediately and the value in the left half of the buffer
goes to the adder input. The other input of the adder is again

⌊
V (uk)
P2(uk)

⌋
now

generated by selecting the correct shifted version of the uk from the right half
of the buffer. The adder generates the updated value of u (uk+1 in eq. 4) at
its output, which is shifted into the buffer and is also used to generate a new
packet in the upstream output of the soma unit. This value is also used to
update the S and MSB flip-flops according to the new value of uk+1. This process
continues until the peak detection block detects a transition of S without any
change in MSB, which indicates an overflow, and immediately corrects the sign bit
of the departing packet, generates a pulse in the axon, and initiates the absolute
refractory period. The absolute refractory period, which lasts for a complete
membrane update cycle, is like any other cycle except that in the second tap the
output of the adder is ignored and contents of the reset voltage shift register is
used instead. The membrane update period (i.e. latency of the whole pipeline),
thus neuron time constants, depend on the number of synapses n (T = 2n + 18
clock cycles). This can be compensated by evolving parameters.

201

3 Implementation

The behaviour and flexibility of the neuron model was verified by VHDL simula-
tion of a single neuron. Random spikes were fed into 16 synapses with different
weights using different bio-plausible parameter settings and its membrane po-
tential was monitored and compared to the expected dynamics of equation (4).
With efficient use of the 32-bit shift registers in Virtex-5 FPGA, a random small-
world network of 161 16-bit neurons with 20 inputs, 20 outputs and, 10 fixed-
weight synapses per neuron, was simulated and synthesized for a XC5VLX50T
chip using VHDL and Xilinx ISE resulting 85% utilization and a maximum clock
frequency of 160MHz (4210 times real-time neuron simulation speed with a 1 ms
resolution). We believe that we can improve some of these figures by low-level
design optimization and a cellular floor-planning similar to [6]. Compared to
[4], this model is 43% faster, but needs more hardware resources. However, it
is difficult to compare these two designs due to differences in design objectives
(flexibility and adaptability instead of hardware minimization and speed) and
technologies. Clearly, the replication of the synapse control units increased hard-
ware resources but also contributed to the adaptability of the dendrite structure
and the real possibility of introducing meaningful development into the process.

4 Conclusions

A digital spiking neuron model with a new architecture and a novel soma model
(PLAQIF) was proposed and its suitability for evolution and development of
heterogeneous neural networks in FPGAs was shown in terms of parametric
flexibility of the soma units, adaptability of the dendrite structures, and model
simulation speed. It was also shown how a local learning unit can be added to
each synapse to improve parallelism. Although the replication of the synapse
control units increases the hardware usage, it brings about the adaptability of
the dendrite structures and may also adds to the fault-tolerance of the network.

References

[1] Daniel Roggen, Diego Federici, and Dario Floreano. Evolutionary morphogenesis for multi-
cellular systems. Genetic Programming and Evolvable Machines, 8(1):61–96, 2007.

[2] Andres Upegui, Carlos Andres Pena-Reyes, and Eduardo Sanchez. An FPGA platform for
on-line topology exploration of spiking neural networks. Microprocessors and Microsys-
tems, 29(5):211–223, June 2005.

[3] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting (Computational Neuroscience). The MIT Press, November 2007.

[4] B. Schrauwen and J. van Campenhout. Parallel hardware implementation of a broad class
of spiking neurons using serial arithmetic. Proceedings of ESANN, 2006.

[5] J.M. Moreno, Y. Thoma, E. Sanchez, J. Eriksson, J. Iglesias, and A. Villa. The POEtic
Electronic Tissue and Its Role in the Emulation of Large-Scale Biologically Inspired Spiking
Neural Networks Models. Complexus, 3(1-3):32–47, 2006.

[6] A. Upegui and E. Sanchez. Evolving Hardware with Self-reconfigurable connectivity in
Xilinx FPGAs. In Adaptive Hardware and Systems, 2006. AHS 2006. First NASA/ESA
Conference on, pages 153–162, 2006.

202

