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Abstract. We study Winner-Takes-All and rank based Vector Quanti-
zation along the lines of the statistical physics of off-line learning. Typical
behavior of the system is obtained within a model where high-dimensional
training data are drawn from a mixture of Gaussians. The analysis be-
comes exact in the simplifying limit of high training temperature. Our
main findings concern the existence of phase transitions, i.e. a critical or
discontinuous dependence of VQ performance on the training set size. We
show how the nature and properties of the transition depend on the num-
ber of prototypes and the control parameter of rank based cost functions.

1 Introduction

Vector Quantization (VQ) is one of the most important families of algorithms
for unsupervised learning. It has been applied in a large variety of practical
contexts, see [1] for examples and references. The aim of VQ is the faithful
representation of a large amount of data by only a few prototype vectors, thus
detecting structures that are present in the data.

Competitive learning algorithms such as Winner-Takes-All (WTA) schemes
or batch variants like the popular k-means clustering aim directly at the mini-
mization of the quantization error. However, they may suffer from confinement
in local minima, potentially leading to far from optimal performance. Numerous
modifications have been suggested in order to overcome this difficulty. Promi-
nent examples are Self-Organizing Maps [7], fuzzy k-means [3], or Neural Gas
(NG) [9], to name only a few. They have in common that the WTA prescription
is replaced by schemes which assign each data point to more than one prototype.
In particular, NG algorithms employ rank based cost functions [9].

We analyse and compare WTA and rank based training within a model sce-
nario. In previous studies we addressed the dynamics of on-line VQ and NG
schemes which are based on a sequence of single example data, e.g. [4, 13].
Here, we consider training from a set of examples by means of off-line or batch
stochastic optimization of a cost function. To this end, we apply methods from
the equilibrium physics of learning which were formerly used to study, amongst
others, multilayer neural networks [6, 10, 12]. This approach allows us to inves-
tigate the typical behavior of off-line VQ learning schemes in model situations.

Our analysis is based on the simplifying limit of training at high temperatures
which has proven to yield first insights into many training scenarios [5, 6, 10]. It
shows how invariances with respect to permutation of prototypes lead to phase
transitions which govern the training process: A critical number of examples is
required for the successful detection of the underlying structure. Similar effects
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of ”retarded learning” have been studied in several models and learning scenarios
earlier, e.g. [5, 8, 11]. Here we consider the extensions to rank based training
and scenarios with more than two prototypes. We show that the nature of the
transition can change significantly under these modifications.

2 Vector Quantization Cost Functions

Assume a data set of P examples is given as ID = {ξμ ∈IRN}P
μ=1. We consider

a system of K prototype vectors W = {wk ∈ IRN}K
k=1 with K � P . The cost

functions considered here can be expressed as empirical averages of an error
measure:

H(W) =
∑P

μ=1 e(W, ξμ) with e(W, ξ) = 1
2

∑K
k=1 d(wk, ξ) g(rk) − 1

2 ξ2. (1)

Here the last term is constant w.r.t. the choice of W and is subtracted for con-
venience in later calculations. Throughout the following, we employ the squared
Euclidean distance measure d(x,y) = (x − y)2. In Eq. (1), the normalization∑K

k=1 g(rk) = 1 of the so-called rank function g is assumed. The argument rk

is the rank of prototype wk with respect to its distance from input vector ξ. It
can be written as

rk = K − ∑K
j �=k Θkj with the shorthand Θkj = Θ [d(ξ,wj) − d(ξ,wk)] (2)

where Θ(.) is the Heaviside function. Specifically, we consider rank functions of
the form

gλ(ri) = exp[−ri/λ]
/∑K

k=1 exp[−rk/λ], (3)

where λ controls the soft assignment of a given vector ξ to the prototypes. In the
limit λ → 0 only the winner wJ with rJ = 1 is taken into account, go(k) = δk,1,
and the costs, Eq. (1), reduce to the quantization error with

eV Q(W, ξ) = 1
2

∑K
i=1 d(wi, ξ)

∏K
j �=i Θij − 1

2 ξ2. (4)

Note that the cost functions considered here are invariant under exchange or
permutations of prototypes.

3 Model Data

We study training processes where the examples ξμ are generated independently
according to a given model density. We will exploit the thermodynamic limit
N → ∞ and assume that the number of examples also grows linearly in N , i.e.
P ∝ N . Specifically, we consider a mixture of two spherical Gaussian clusters:

P (ξ) =
∑2

m=1 pm P (ξ|m) with P (ξ|m) = 1
(2π)N/2 exp

[
− (ξ − �Bm)2 /2

]
(5)

where the prior weights satisfy p1 +p2 = 1. The cluster centers are given by �B1

and �B2 with the separation parameter �. Without loss of generality, we assume
that the Bm are orthonormal with Bm · Bn = δmn. Densities of the above or a
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similar form have been studied previously in the context of both supervised and
unsupervised learning, see e.g. [4, 6, 8, 13]. Note that for large N , the highly
overlapping clusters become only apparent in subspaces that have significant
overlap with the Bi. Projections into randomly selected two-dimensional spaces,
for instance, do not display any structure, see [4].

4 Equilibrium Physics Approach

We give a brief overview of the standard statistical physics analysis of off-line
learning [10, 12] and refer to [14] for the details. Training is interpreted as a
stochastic minimization of H(W) on the data set ID, where the formal temper-
ature T controls the degree of randomness. This leads to a well-defined thermal
equilibrium: a configuration W is observed with a probability given by the Gibbs
density

P (W) = exp [−β H(W)]/Z where Z =
∫

dμ(W) exp [−β H(W)] . (6)

Here β = 1/T , the normalization Z is called the partition sum and the measure
dμ(W) is the NK-dim. volume element. Thermal averages 〈.〉 over P (W) can
be calculated as derivatives of the so-called free energy − ln Z/β, for instance:
〈H〉 = − ∂ ln Z/ ∂β.

Note that this type of average describes the system trained on one specific
data set. In order to obtain generic properties of the model scenario, an addi-
tional average over all possible ID is performed, yielding the so-called quenched
free energy −〈ln Z〉ID /β [6, 10, 12]. In general, the computation of 〈ln Z〉ID
requires involved techniques from the theory of disordered systems such as the
replica method.

Here we resort to the study of training at high temperatures which allows us
to use simplifying relations in the limit β → 0. This limit has proven to provide
important insights into a variety of learning scenarios [6, 10, 12]. Non-trivial
results can only be expected if the increased noise is compensated for by a larger
number of examples α̃ = β(P/N). Because large training sets sample the model
density very well, the empirical average 1

P

∑P
μ e(W, ξμ) can be replaced by 〈e〉ξ,

i.e. an average over the full P (ξ).
The mean cost 〈e〉ξ for high dimensional data can be expressed as a function

of the order parameters

Rij = wi ·Bj and Qij = wi ·wj , (7)

see [13] for the result and details of the calculation. It can be performed analyti-
cally for systems with two prototypes and involves numerical Gaussian integrals
for K ≥ 3. The set of quantities (7) represents the structure imposed by the
cluster center vectors Bj . We can rewrite 〈ln Z〉ID as an integral over the order
parameters as follows:

〈ln Z〉ID = ln
∫ ∏

i,jdRij

∏
i,j≤idQij exp

(
−N

[
α̃ 〈e〉ξ − s ({Rij , Qij})

] )
. (8)

Here, the entropy term s gives the phase space volume corresponding to a par-
ticular configuration of order parameters {Rij , Qij}, see [2, 14] for a derivation
and the result in closed form.
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Fig. 1: (a) The order parameters Rk1 of the stable configuration given the num-
ber of example α̃ for K =2. The system undergoes a continuous phase transition
at a critical value α̃c(K = 2)≈1.85. (b) Rk1 for K = 3, with two of the three val-
ues coinciding in the upper curve. The transition is discontinuous; solid (dashed)
lines mark global (local) minima of f . Here, α̃s(K = 3) ≈ α̃c(K = 3) ≈ 2.18 and
α̃d(K = 3) ≈ 2.20. The parameters of the input density (5) are p1 =0.8, p2=0.2
and �=1 in both panels.

We can use the saddle-point method to evaluate (8) in the limit of large N .
For N → ∞, this integral is dominated by the maximum integrand, i.e. the min-
imum of the terms in the square brackets f({Rij , Qij}) = α̃ 〈e〉ξ −s ({Rij , Qij}),
and the quenched free energy becomes −〈ln Z〉ID/N = β minf({Rij , Qij}). Hence,
given a specific cost function and training set size α̃, we obtain the typical
equilibrium properties of the system by minimizing the free energy function
f({Rij , Qij}) with respect to the order parameters.

5 Results

We first investigate the WTA cost function with λ = 0. For K = 2 and small α̃,
thermal equilibrium corresponds to states with unspecialized prototypes, i.e. the
specialization Δm = |R1m−R2m| = 0 for all m. Both prototypes w1,2 coincide in
the space spanned by B1,2, while their differences in the (N−2)-dim. orthogonal
space are reflected by non-trivial configurations of {Qij}. The underlying cluster
structure is not at all detected as long as α̃ is smaller than the critical value α̃c.
This parallels findings for supervised learning in neural networks with two hidden
units [5] or unsupervised learning scenarios [8, 11]. Above α̃c, prototypes begin
to align with the clusters and the system becomes specialized, i.e. each wi has
a larger overlap with exactly one of the cluster centers. Obviously, exchange of
the prototypes would not alter the value of H or f and the two configurations
are completely equivalent. In the continuous symmetry breaking transition, one
of the two states is selected as signaled by a sudden power law increase of Δm

for α̃ ≥ α̃c. Fig. 1 (a) shows the dependence of the equilibrium values of R11 and
R21 on α̃ in an example situation. The transition results in a non-differentiable
kink in the learning curve 〈eV Q〉ξ vs. α̃ as shown in Fig. 2 (a). The critical value
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depends on the model settings. For instance, α̃c will be larger for smaller �.
The behavior is qualitatively different in systems with K = 3, see Fig. 1 (b).

Again, equilibrium configurations are unspecialized for small data sets. At a
characteristic value α̃s, a specialized configuration with lower 〈eV Q〉ξ appears.
However, the transition is discontinuous, i.e. the specialization Δm increases
from zero to a finite value in α̃s. The projections of two of the three prototypes
into the span(B1,B2) coincide close to the center of the cluster with larger prior
weight. Note that, in a generic discontinuous phase transition, one expects a
range of values α̃s ≤ α̃ < α̃c where the specialized configuration corresponds
to a local minimum of f , see [5] for an example. However, for the setting of
parameters considered here, α̃s = α̃c within the achievable numerical precision
and we find that the free energy of the specialized configuration is always smaller
than that of the system with Δm = 0. However, a local minimum of f corre-
sponding to unspecialized wi persists in the range α̃c ≤ α̃ < α̃d. While such a
meta-stable state does not represent thermal equilibrium, its existence can have
strong delaying effects in the practical optimization of H(W). We expect α̃s

and α̃c to differ more significantly for other settings of the model parameters,
e.g. for larger �.

Finally we investigate the minimization of rank based cost functions with
λ > 0 in Eq. (1). We observe the same qualitative behavior as in WTA learn-
ing. However, the critical value αc needed for prototype specialization and thus
successful training, increases with the rank function parameter λ. Figure 2 (c)
shows this dependence for the two example cases with K = 2 and K = 3. Note
that the slope dα̃c/dλ = 0 for λ → 0. Thus, performing rank based training with
an appropriate annealing of λ appears to be a promising strategy for practical
optimization of the quantization error. In this context, also the dependence of
α̃d on λ will play an important role.

6 Conclusion

We have presented first results for WTA and rank based VQ systems along
the lines of the statistical physics analysis of off-line learning. The analysis is
based on the high temperature limit, which provides important insights into the
training process. In analogy to previous studies of supervised learning, compare
e.g. [5] with [2], we expect that most of our findings will carry over qualitatively
to stochastic minimization procedures at finite temperature, i.e. low noise.

We show that for, both, two- and three-prototype systems, a critical number
of examples is required before the underlying structure can be detected at all.
This parallels findings for various other training scenarios and is highly relevant
from a practical point of view: even the best optimization strategies will fail
completely if too few example data are available. The nature of the phase
transition is continuous for two prototypes and discontinuous for K ≥ 3. The
meta-stable states for K ≥ 3 also shows that long delays may happen in practice
even if the critical number of examples is exceeded.

In future projects we will investigate systematically the dependence of the
learning behavior on the model parameters. For instance, we anticipate the
existence of further competing states such as partially symmetric configurations
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Fig. 2: The mean error 〈eV Q〉ξ for (a) K =2 and (b) K =3 and parameters as in
Fig. 1. The transition results in a kink for K =2 and a discontinuous drop for
K =3 at the respective α̃c. c) The values of α̃c vs. the parameter λ, cf. Eq. (3).

for larger � and in NG systems with many prototypes. The analysis of training
at low temperature will require more sophisticated techniques, e.g. the so-called
annealed approximation or the replica method. These allow for an independent
variation of the number of examples P/N and the training temperature and will
provide further insight into the typical behavior of practical VQ schemes.
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