
On related violating pairs for working set
selection in SMO algorithms

Tobias Glasmachers

Optimization of Adaptive Systems Group
Institut für Neuroinformatik

Ruhr-Universität Bochum - Germany

Abstract. Sequential Minimal Optimization (SMO) is currently the
most popular algorithm to solve large quadratic programs for Support
Vector Machine (SVM) training. For many variants of this iterative algo-
rithm proofs of convergence to the optimum exist. Nevertheless, to find
such proofs for elaborated SMO-type algorithms is challenging in general.
We provide a basic tool for such convergence proofs in the context of
cache-friendly working set selection. Finally this result is applied to no-
tably simplify the convergence proof of the very efficient Hybrid Maximum
Gain algorithm.

1 Introduction

In the standard supervised learning scenario we are given a training dataset
(x1, y1), . . . , (x�, y�) of i.i.d. examples consisting of input x ∈ X and (target) label
y ∈ Y . Support Vector Machines (SVMs) are a state of the art machine learning
method for the construction of hypotheses h : X → Y from such data. Given
Mercer kernel function k : X ×X → R and regularization parameters depending
on the type of SVM used, the machine is trained by solving a quadratic program
of the form

maximize f(α) = yT α − 1
2
αT Kα (1)

s.t.
�∑

i=1

αi = 0 (equality constraint)

and Li ≤ αi ≤ Ui ∀ 1 ≤ i ≤ � (box constraint)

for α ∈ R
�. In the case of binary classification the vector y ∈ R

� is composed of
the training labels, with components ±1. The positive semi definite �× �-matrix
K is the kernel Gram matrix of the training inputs, that is, Kij = k(xi, xj). The
lower and upper bounds are fixed to Li = min{0, yi C} and Ui = max{0, yi C}
with the regularization parameter C > 0. Finally, the SVM hypothesis is con-
structed from the optimal α of problem (1) as h(x) = sign

(∑�
i=1 αik(x, xi) + b

)
,

where the offset b is obtained from α after the solution of the quadratic program.
That is, the main effort for SVM training is to solve the quadratic program (1).
Because the dimension � of this problem can be very large this is a challenging
task and the usage of standard optimization software is often impractical.

475



The Sequential Minimal Optimization (SMO) algorithm [1] for the solution
of quadratic programs is highly adapted to the special form of the constraints
of problem (1). It is a special form of the iterative decomposition algorithm. Its
basic skeleton is outlined in Algorithm 1.

Algorithm 1: General SMO Algorithm
Input: feasible initial point α, accuracy ε
compute the initial gradient ∇f(α) = y − Kα
do

select a working set B1

update α by solving the sub-problem induced by B2

compute the gradient ∇f(α) in the new search point3

check the stopping condition, depending on ε4

loop

In each iteration a tuple B = (i, j) with i, j ∈ {1, . . . , �}, i �= j, consisting
of two variable indices is selected. It is referred to as the working set,1 because
the algorithm restricts itself to these variables in the current iteration. Working
set selection is the most crucial part of the algorithm and we will discuss it in
detail in the next section.

After the working set is selected the algorithm updates the search point α by
optimally solving the problem with the additional constraint that all variables
not indexed by the working set are fixed. Then only two variables need to be
considered. Together with one equality constraint the resulting problem is one-
dimensional and can be solved very efficiently with a truncated Newton step [1].
The gradient in the new search point is obtained as an update of the old gradient
in O(�) operations. As a stopping condition the algorithm usually checks whether
the Karush-Kuhn-Tucker (KKT) conditions of optimality are fulfilled up to a
small predefined constant ε > 0. For a more detailed introduction to the SMO
algorithm we refer to the literature [1, 2, 3, 4, 5].

In general the kernel matrix K does not fit into the available working memory.
To avoid costly recomputation of matrix entries modern implementations use
a cache to store the most recently used rows of the matrix. Together with
shrinking [6] this technique is highly efficient.

2 Working Set Selection

The working set selection policy is the key to the performance of the SMO
algorithm as well as to its convergence properties. Note that the algorithm
produces a sequence of feasible points. Given the initial solution this sequence is
completely determined by the sequence of working sets. Thus, the convergence
to the optimum as well as the speed of this convergence crucially depend on the
working set selection algorithm. Here, we discuss three working set selection
strategies. With B = (i, j) the most violating pair (MVP) selects the pair which

1To simplify our notation we use ordered tuples instead of sets in this paper.

476



most strongly violates the KKT conditions of optimality (see [2, 5]):

i = arg max
{

∂f

∂αn
(α)

∣∣∣∣ 1 ≤ n ≤ � with αn < Un

}
(2)

j = arg min
{

∂f

∂αn
(α)

∣∣∣∣ 1 ≤ n ≤ � with αn > Ln

}
.

Recently MVP was superseded by second order working set selection methods.
The basic idea is to directly maximize the functional progress or gain of the
SMO step. Let α be the current solution and let αB be the subsequent search
point after a step with working set B. Then, gB(α) = f(αB)− f(α) defines this
gain. Fan et al. [3] propose to select the second index as

j = arg max

⎧⎪⎨
⎪⎩

1
2

(
∂f
∂αi

(α) − ∂f
∂αn

(α)
)2

Kii − 2Kin + Knn

∣∣∣∣∣∣∣
1 ≤ n ≤ � with αn > Ln

⎫⎪⎬
⎪⎭ , (3)

where the function to be maximized is a simple upper bound of the gain which
is easier to compute than gB(α). This very efficient algorithm is used in the
popular software LIBSVM [3]. Both methods are known to converge to the
optimum [2, 7, 3].

Another approach presented by Glasmachers and Igel [4] is to directly max-
imize the gain. Due to efficiency we can not maximize over all possible pairs.
Instead we restrict ourselves to working sets such that one index is chosen from
the working set selected in the most recent iteration. Let B̃ denote the most
recent working set, then the Maximum Gain (MG) policy selects

B = (i, j) = arg max
{

gB(α)
∣∣∣ B is related to B̃

}
.

We call two tuples (i1, j1) and (i2, j2) related if the corresponding sets {i1, j1}
and {i2, j2} have a common element. To select related pairs in subsequent
iterations exactly captures the idea to reselect one previously selected variable.

However, to ensure convergence MG has to fall back to another algorithm
whenever the most recent step ended near a corner, that is, both variables in-
dexed by the previous working set end up in a small neighborhood of their lower
or upper bounds. Originally, MVP selection was used in this case, but the
second order selection (3) as well as any other convergent algorithm would be
alternative options. The resulting algorithm is called Hybrid Maximum Gain
(HMG). The handling of different cases and the reselection of one index from
the previous working set considerably complicate the convergence proof given
in [4]. Nevertheless the reselection of one index is worth the efforts because it
significantly speeds up the whole algorithm for large scale problems where only
small fractions of the kernel matrix fit into the cache. This is because exactly
the rows of K corresponding to the indices in the working set are needed in
each iteration. By reselecting one index it is ensured that the corresponding row
was used recently and is available from the cache. In this paper we consider
algorithms exploiting this feature.

477



3 Main Result

In this section we derive a general result for cache friendly SMO variants that
reselect one element of the previous working set.

It is well known that the sequence produced by the SMO algorithm strictly
increases the objective function value if and only if the working set selection
algorithm selects a violating pair in each iteration. This condition is necessary
but not sufficient for convergence to the optimum. For B = (i, j) we define the
vector v(i,j) = vB = ei − ej , where en is the n-th unit vector in R

�. Further, we
call a variable αn free if it is not at the box boundary, that is, Ln < αn < Un.

Definition 1. A working set B = (i, j) is a violating pair for α if αi < Ui,
αj > Lj and vT

B∇f(α) > 0.

It is well known that, for non-optimal α, all working set selection algorithms
discussed in the previous section select violating pairs. In particular for any
non-optimal feasible α there exists a violating pair. Note that for (i, j) with
αi < Ui and αj > Lj the quantity vT

(i,j)∇f(α) is positive if and only if (i, j) is a
violating pair.

The importance of violating pairs for the convergence of the SMO algorithm
to the optimum motivates the following simple but important lemma:

Lemma 2. Let α be a non-optimal feasible point and i an index such that the
corresponding variable αi is free. Then there exists j such that either B = (i, j)
or B = (j, i) is a violating pair. This pair fulfills the inequality

vT
B∇f(α) ≥ 1

2
max

{
vT

W∇f(α)
∣∣∣ W is a violating pair for α

}
.

Proof Let W = (m,n) be the maximizer of the right hand side, that is, (m,n)
is the most violating pair defined in equation (2). In particular we have αm <
Um and αn > Ln. From v(m,i) + v(i,n) = v(m,n) we conclude vT

(m,i)∇f(α) +
vT
(i,n)∇f(α) = vT

(m,n)∇f(α) > 0 which implies that at least one of the summands
is positive. This already shows that one of the pairs (m, i) or (i, n) is violating.
We define the value M = 1

2

(
∂f

∂αm
(α) + ∂f

∂αn
(α)

)
and write

∂f

∂αm
(α) =

(
M +

1
2
vT
(m,n)∇f(α)

)
and

∂f

∂αn
(α) =

(
M − 1

2
vT
(m,n)∇f(α)

)
.

Depending on the derivative ∂f
∂αi

(α) we distinguish two cases: For ∂f
∂αi

(α) ≤ M
the computation

vT
(m,i)∇f(α) =

∂f(α)
∂αm

− ∂f(α)
∂αi

≥
(

M +
1
2
vT
(m,n)∇f(α)

)
− M =

1
2
vT
(m,n)∇f(α)

reveals the desired estimate for vT
(m,i)∇f(α) which immediately implies that

(m, i) is a violating pair. It is completely analogous to obtain vT
(i,n)∇f(α) ≥

1
2vT

(m,n)∇f(α) with violating pair (i, n) from ∂f
∂αi

(α) ≥ M .

478



The result of this lemma is quite general. In the following we will apply
it to the cache-friendly version of the SMO algorithm selecting related pairs in
subsequent iterations:

Corollary 3. Let (i, j) be the working set of the previous SMO step resulting
in the current point α. If αi or αj is free then there exists a violating pair B
related to (i, j).

Proof First we consider the case that αi is free. Then Lemma 2 states that
there exists n such that either (i, n) or (n, i) is a violating pair. Obviously these
pairs are related to (i, j). The proof is completely analogous if αj is the free
variable.

If we further assume that the algorithm selects the new index j like in the
proof of Lemma 2 resulting in the lower bound for vT

(i,j)∇f(α) we can apply a
powerful general convergence result by Chen et al. [5]. We quote this result in
our terms:

Theorem 4 [Theorem 3 from [5] ]. Assume the SMO algorithm produces
an infinite sequence (α(n))n∈N and let there exist 0 < σ ≤ 1 such that in each
non-optimal α the working set B fulfills

vB(α)T∇f(α) ≥ σ max
{

vW (α)T∇f(α)
∣∣∣ W is a violating pair for α

}
.

Then the sequence f(α(n)) converges to the optimum of problem (1).

Lemma 2 states that we can always find a working set related to the previous
working set with σ = 1

2 . Thus, it seems as if the above theorem can guarantee
convergence when selecting subsequent related working sets. The only short-
coming of this approach is that at least one variable indexed by the previous
working set must be free. This is why HMG uses a fall-back algorithm without
the restriction to reselect one index in this situation. However, in practice this
situation occurs only in the very early stage of the optimization and thus does
not affect the overall runtime of the cache friendly SMO algorithm (see [4]).

4 Application to the HMG Algorithm

Finally, we will apply Lemma 2 and in particular Corollary 3 to simplify the
proof of convergence of the HMG algorithm given in [4]. This proof crucially
depends on the following lemma which is used several times therein:

Lemma 5 [Lemma 8 from [4] ]. We consider problem (1), a current non-
optimal point α, and a previous working set B1. If at least one of the variables
indexed by B1 is free then there exists a working set B2 related to B1 such that
positive gain gB2(α) > 0 can be achieved.

479



This lemma is obviously equivalent to Corollary 3. However, its formulation
has two decisive drawbacks. First, it does not really capture the nature of the
problem it solves. This is accomplished by Lemma 2. Second, its original proof
(see [4]) is unnecessarily complicated.

The main part of the proof considers the case of general sub-problems with
four variables. These problems are categorized into a finite number of cases. A
total of 94 · 32 · 24 = 2, 834, 352 different cases occur and a computer program
is provided that checks each case individually. This proceeding is of course
completely correct, but it is neither easy to verify by the reader nor does it
provide deeper insights. In addition, it lacks mathematical beauty.

In contrast, in each of the proofs of Lemma 2 and Corollary 3 there are
only two different cases, and these are clearly separable (which is reflected by
the separation into Lemma 2 and Corollary 3). Therefore we can now enjoy
the advantage of a proof conforming to a typical mathematical line of thought.
Lemma 5 is indeed the most critical part of the proof presented in [4]. Therefore
it is of major importance for the whole convergence result that this lemma is
funded on a rigorous proof which can be easily validated and understood.

5 Conclusion

We present a result for proving the convergence of cache-friendly variants of the
SMO algorithm to the optimum. Because of its generality it may even turn out
to be valuable in other circumstances. The point of view taken in this work
greatly simplifies the earlier approach in [4] and yields an equivalent result. It
identifies the core of the restriction imposed by selecting related working sets in
subsequent iterations. This much cleaner proceeding results in a more general
formulation and allows for a greatly simplified proof.

References

[1] J. Platt. Fast Training of Support Vector Machines using Sequential Minimal Optimiza-
tion. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, chapter 12, pages 185–208. MIT Press, 1999.

[2] S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM
classifier design. Machine Learning, 46:351–360, 2002.

[3] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working Set Selection using the Second Order In-
formation for Training Support Vector Machines. Journal of Machine Learning Research,
6:1889–1918, 2005.

[4] T. Glasmachers and C. Igel. Maximum Gain Working Set Selection for SVMs. Journal of
Machine Learning Research, 7:1437–1466, 2006.

[5] P.-H. Chen, R.-E. Fan, and C.-J. Lin. A Study on SMO-type Decomposition Methods for
Support Vector Machines. IEEE Transactions on Neural Networks, 17:893–908, 2006.

[6] T. Joachims. Making large-Scale SVM Learning Practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods – Support Vector Learning, chapter 11,
pages 169–184. MIT Press, 1999.

[7] N. Takahashi and T. Nishi. Rigorous Proof of Termination of SMO Algorithm for Support
Vector Machines. IEEE Transaction on Neural Networks, 16(3):774–776, 2005.

480


