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Abstract. Prototype-based clustering algorithms such as the Self Orga-
nizing Map (SOM) or Neural Gas (NG) offer powerful tools for automated
data inspection. The distribution of prototypes, however, does not co-
incide with the underlying data distribution and magnification control is
necessary to obtain information theoretic optimum maps. Recently, sev-
eral extensions of SOM and NG to general non-vectorial dissimilarity data
have been proposed, such as Relational NG (RNG). Here, we derive a
magnification control scheme for RNG based on localized learning, and we
demonstrate its applicability for various data sets.

1 Introduction
SOM constitutes one of the most prominent data inspection tools with numerous
applications in image processing, robotics, telecommunication, etc. [10]. Neu-
ral Gas constitutes an alternative clustering method proposed by Martinetz et
al. [11], which automatically detects a data optimum lattice. Thus, clustering
results are more robust, but additional steps such as MDS are required for visu-
alization. Both algorithms, however, are developed for vectorial data and they
cannot directly be applied to data such as strings, time series, graphs, etc.

Several extensions of clustering towards more general data have been pro-
posed, see e.g. [7] for an overview. A very elegant way is to model data by
pairwise (dis-)similarities. One way to deal with such data is Median clustering
[1] which restricts prototype locations to given data points in standard batch
optimization. However, it has the drawback that a fine-grained optimization of
prototype locations is not possible. Relational SOM and NG [5, 8] extend batch
clustering towards general dissimilarity data by means of the relational dual re-
sulting in a scheme which is equivalent to standard NG and SOM for Euclidean
data and which allows smooth updates in the general setting.

General vector quantization does not compute information optimum maps,
rather, the prototype distribution follows the data distribution by means of a
power law with magnification exponent �= 1 [15]. By changing the learning rule,
the magnification exponent of neural maps can be controlled [13]. This can
lead to great benefits in practical applications as demonstrated in [9, 14]. Here,
we extend magnification control to RNG based on a local learning scheme for
Batch NG as proposed in [6]. This way, we obtain a method to control the focus
of the neural map on sparse resp. dense regions of the data space for general
dissimilarity data. We demonstrate the behavior for several benchmark sets.

2 Neural Gas
Neural Gas (NG) [11], is a vector quantization technique aiming for representing
given data v ∈ V ⊆ R

d faithfully by prototypes wi ∈ R
d, i = 1, . . . , n. For an

input distribution given by a density P (v), and neighborhood range controlled
through the function hλ(t) = exp(−t/λ) with λ > 0, its cost function is
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E =
1
2

n∑
i=1

∫
hλ(k(wi, v)) · ‖v − wi‖2 P (v)dv,

where k(wi, v) = |{wj : ‖v − wj‖ < ‖v − wi‖}| denotes the rank of neuron wi

arranged according to the distance from data point v. Typically, NG is optimized
online. Batch optimization as proposed in [1] optimizes the cost function for a
given set {v1, v2, . . . , vm}. It, in turn, determines the ranks kij for fixed wi and
new prototypes wi =

∑
j hλ(kij) · vj/

∑
j hλ(kij) for fixed ranks kij .

3 Relational Neural Gas
We assume data are given only by means of pairwise distances dij . As already
mentioned beforehand, median clustering [1] restricts prototype locations to data
points such that only discrete optimization steps are possible. Relational Neu-
ral Gas [5] overcomes this problem by using convex combinations of the data
points. Assume that there exists an (unknown and possibly high-dimensional)
embedding of the data points in a Euclidean space, i.e. dij = ‖vi − vj‖. Then,
optimum prototypes can be expressed as wi =

∑
j αijvj with

∑
j αij = 1. There-

fore, quadratic distances ‖wi − vj‖2 between feature points and prototypes can
be expressed as ‖wi − vj‖2 = (Δ · αi)j − 1/2 · αt

i · Δ · αi, where Δ = (d2
ij)ij

constitutes the quadratic distance matrix and αi = (αij)j the coefficients of pro-
totypes. Thus, we can use this term in batch optimization to compute optimum
ranks, and, in turn, we can compute optimum prototype locations given fixed
ranks

αij = hλ(ki(vj))/
∑

j

hλ(ki(vj)). (1)

This allows to reformulate batch optimization in terms of relational data [5]. This
scheme is equivalent to batch NG if an Euclidean embedding of the data points
exists. If this is not possible, the consecutive optimization can still be applied.
It has been shown in [5] that this algorithm converges for every nonsingular
symmetric matrix Δ and it optimizes the relational dual cost function of NG.

4 Magnification Control
As demonstrated by Zador [15], vector quantization techniques aiming for a
minimization of the distortion error feature the inherent characteristic that the
final prototype density ρ does not exactly match the data density P . The relation
asymptotically obeys the power law ρ(w) ∼ P (w)α, with α = D/(D + 2) for
vector quantizers minimizing the quadratic distortion error, where D denotes the
intrinsic data dimensionality. The exponent α is called magnification exponent.

Arbitrary magnification can be achieved, among other techniques, by a local-
ized learning strategy [13]. The update rule is extended by a local learning rate
which depends on the local data density. As derived in [6], the batch update is

wi =
∑

j

(hλ(kij) · P (vj)m · vj)
/ ∑

j

(hλ(kij) · P (vj)m) . (2)

Associated with this update is a modified magnification power law ρ(wi) ∼
P (wi)α′

where α′ = (m+1) ·α. Parameter m allows to control the magnification
as desired. The information theoretic optimum α′ = 1 is reached at m = 2/D.
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The localized learning technique can easily be transferred to RNG by inte-
grating the factor into the prototype updates rule (2) as follows

αij = (hλ(ki(vj)) · P (vj)m) /
∑

j

(hλ(ki(vj)) · P (vj)m) . (3)

If an Euclidean embedding of data points exists, this learning rule is equivalent
to local learning for batch NG (2) as can be seen by inserting the rule (3) into
the prototype representation wi =

∑
j αijvj . Thus, the theoretical guarantees

as derived in [6] hold for this case. For the non-Euclidean case, the theoretical
effect of the localized learning rule is not clear a priori, we can, however, show
convergence for every nonsingular and symmetric Δ: Consider the cost function

E(kij , αij) =
∑
i,j

hλ(kij)P (vj)m
(∑

l

d2
jlαil − 1

2

∑
l,l′

d2
ll′αilαil′

)
(4)

with some function P (vj) (not necessarily a density). Assume this cost function
is optimized under the condition that kij constitutes a permutation of {0, . . . , n−
1} for all j. It is obvious, that localized RNG computes optimum values kij for
fixed αij . Conversely, for fixed kij , optimum αij obey ∂E(kij , αij)/∂αnl = 0,
hence

0 =
∑

j

d2
lj

(
hλ(knj)P (vj)m −

∑
j′

hλ(knj′ )P (vj′ )m · αnj

)

for all n, l, which, for nonsingular matrix Δ, yields Eqn. (3). Hence, the func-
tion E(kij , αij) is in turn optimized for αij and kij in localized RNG. Thus, it
converges after a finite number of steps to a local optimum of Eqn. (4) because
only finitely many values kij exist. One can compute that, for optimum αij , the
function (4) is equivalent to the extended relational dual cost function

E∨ =
1
2
·
∑

i

∑
l,l′

hλ(kil)hλ(kil′ )P (vl)mP (vl′)md2
ll′

/∑
l′′

hλ(kil′′ )P (vl′′ )m (5)

which measures the dissimilarities of data points assigned to the same clusters,
weighted according to P (vl)m. The denominator accounts for the fact that
the size of clusters per se is not important. Obviously, the control parameter m
allows to control the relevance of the value d2

ll′ of data points vl in certain regions
of the data space. Assume P (vl) measures the relative number of similar points
(or local data density, if defined). Then a control parameter m > 1 emphasizes
regions which contain a large number of pairwise similar data points, whereas
m < 1 emphasizes regions with only few pairwise similar points.

5 Experiments
We test local learning for a Euclidean benchmark, and four non-Euclidean set-
tings as described in [12, 4]. In the latter cases, local learning can be applied and
it can be expected that ‘dense’ or ‘sparse’ regions, respectively, of the data are
emphasized depending on m due to the optimized costs (5). However, the exact
theoretical law of the prototype density and its information theoretic optimum
is not known. Note that, if Δ stems from a metric, the concept of dimensionality
can be defined for the underlying data manifold and the intrinsic data dimension-
ality can been estimated using a Grassberger-Procaccia analysis [3]. Similarly,
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Fig. 1: Left: Euclidean benchmark data – Entropy of map formation for different
values m of magnification control and training sets of intrinsic dimensionality d ∈
{1, 2, 3} — Right: Chicken Pieces Dataset – Entropy for different magnification
control parameter values m

density estimation is possible for separable metric spaces and uniformly contin-
uous densities by means of histogram estimators [2]. For simplicity, we compute
P (v) using a simple Parzen window with bandwidth chosen as a third of the
average point distance, which gives a rough approximation to the underlying
density for Euclidean and metric settings, respectively.

For all experiments the initial neighborhood range λ0 was chosen as n/2,
n being the number of neurons. The neighborhood range λ(t) at epoch t was
decreased according to λ(t) = λ0·(0.01/λ0)t/tmax (cf. [11]), tmax being the number
of epochs. If not indicated otherwise, the number of epochs was 100.

Control experiment
At first, the experiment from [6] for Euclidean data was repeated for RNG as
control. Data were sampled from the distribution (v1, . . . , vd,

∏d
j=1 sin(π · vj))

for d ∈ {1, 2, 3} and uniform vi ∈ [0, 1]. The number of stimuli was chosen as
2500 for d = 1, 5000 for d = 2, and 10000 for d = 3. We trained RNG for control
values m ∈ [−1.5, 3.5] and step size 0.25. A NG network with 50 neurons has
been used. The reported results have been averaged over 20 runs.

The information theoretic quality of the map can be judged by computing
the map entropy as reported in Fig. 1. The entropy should be maximum for
optimum information transfer, i.e. for m = 2 (d = 1), m = 1 (d = 2), and
m = 2/3 (d = 3). As indicated by the arrows, the experimental optima of the
curves are closely situated to the expected theoretical values.

Protein Dataset
The evolutionary distance of 226 globin proteins is determined by alignment.
These samples originate from different protein families: hemoglobin-α, hemoglo-
bin-β, myoglobin, etc. Here, we distinguish five classes as proposed in [4]: HA
(31.86%), HB (31.86%), MY (17.26%), GG/GP (13.27%), and Others 5.75%).
Note that the class Others combines small classes from the original dataset and
represents only a small fraction of the whole dataset.

For the experiment RNG with magnification control parameter m ∈ [−1.5, 3.5]
(step size 0.1) and 50 neurons was trained. The results presented in Fig. 2 are
the average over 100 runs. The theoretical optimum m∗ ≈ 0.63 for the Euclidean
case as indicated by the arrow in Fig. 2 was derived from the estimated intrinsic
dimension D ≈ 3.18. Note that magnification control by localized learning is
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Fig. 2: Protein Dataset – Left: Entropy for different magnification control pa-
rameter values m, Right: true positives rates

obviously possible for this non-Euclidean setting. Interestingly, the information
theoretic optimum of the curve is closely situated to the Euclidean one.

To demonstrate the magnification effect on exterior (small) classes, the true
positives rate for each class is depicted in Fig. 2. Apparently, the classification
rate is getting better when focusing on rare events, i.e. for small m.

Chicken Pieces Silhouettes Dataset
The task is to classify 446 silhouettes of chicken pieces into 5 categories (wing,
back, drumstick, thigh and back, breast). Data silhouettes are represented as a
string of the angles of consecutive tangential line pieces of length 20 and com-
pared using a (rotation invariant) edit distance, where insertions/deletions cost
60, and the angle difference is taken otherwise. We trained a RNG network with
magnification control using 50 neurons and control parameter m ∈ [−1.5, 3.5]
(step size 0.1). The average over 100 runs for each different value m was taken.

The arrow in Fig. 2 indicates the theoretical optimum m∗ ≈ 0.54 for the
Euclidean case that was derived from the estimated intrinsic dimension D ≈ 3.72.

Chromosome Images Dataset
The Copenhagen chromosomes database is a benchmark from cytogenetics. fea-
turing 4200 human chromosomes from 22 classes, represented by grey images.
These images were transferred to strings of chromosome thickness and compared
by alignment. RNG with magnification control has been trained using 80 neu-
rons for control parameter m ∈ [−1.5, 3.5] (step size 0.25).

The results shown in Fig. 3 present the average over 10 runs for each dif-
ferent value m. The figure shows very smooth control of the map entropy by
localized learning. The observed optimum for the considered metric differs from
the corresponding optimum m∗ ≈ 0.68 (D ≈ 2.93) in the Euclidean case.

Cat Cortex Dataset
The Cat Cortex Data Set originates from anatomic studies of cats’ brains. A
matrix of connection strengths between 65 cortical areas was compiled from
literature. For our experiments a preprocessed version of the data set from
Haasdonk et al. [4] was used with symmetric matrix which violates the triangle
inequality. Note that relational clustering works quite well also in this case of
non-metric data. For the experiment, RNG with magnification control has been
trained using 12 neurons for control parameter m ∈ [−1.5, 3.5] (step size 0.1).
The results shown in Fig. 3 (right) present the average over 100 runs.
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Fig. 3: Chromosome Dataset (left) and CatCortex Dataset (right) – Entropy for
different magnification control parameter values m

6 Conclusions
We have extended magnification control by localized learning to Relational Neu-
ral Gas, a very powerful extension of NG for general dissimilarity data. The
theory transfers directly from standard NG if an Euclidean embedding of data
exists; for the general setting of symmetric and nonsingular Δ, convergence can
be guaranteed and the dual cost functionis optimized. Experiments demon-
strated a very robust and smooth behavior that can be beneficial in practical
applications. Thus, magnification control is possible also in the non-Euclidean
case using localized learning, although the exact location of the information-
theoretic optimum is not known. Depending on the considered metric or matrix
Δ, the location of the optimum can change compared to the Euclidean setting
as it was shown in the context of Concave/Convex Learning for NG [13].
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[9] A. Jain and E. Merény, Forbidden Magnification? I, ESANN’2004.

[10] T. Kohonen, Self-Organizing Maps, Springer, 1995.

[11] T. Martinetz, S. Berkovich, and K. Schulten, ‘Neural gas’ network for vector quantization
and its application to time series prediction. IEEE TNN, 4(4):558–569, 1993.

[12] M. Neuhaus and H. Bunke, Edit distance based kernel functions for structural pattern
classification. Pattern Recognition 39(10):1852-1863, 2006.

[13] T. Villmann and J. C. Claussen Magnification control in self-organizing maps and neural
gas, Neural Computation, 18(2):446-469, 2006.

[14] T. Villmann and A. Heinze, Application of magnification control for the neural gas
network in a sensorimotor architecture for robot navigation. SOAVE’2000, 125–134, 2000.

[15] P. Zador, Asymptotic quantization error of continuous signals and the quantization di-
mension. IEEE Transactions on Information Theory, 28:149–159, 1982.

330


