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Abstract. We present a method for motor planning based on visuokines-
thetic prediction by a forward model (FM) and the optimization method
“differential evolution” (DE) for a block-pushing task of a robot arm. The
FM is implemented by a set of multi-layer perceptrons and used for the
iterative prediction of future sensory states in an internal simulation pro-
cess. DE is applied to determine via this internal simulation the movement
sequences by which a target block can be successfully pushed from an ar-
bitrary start to an arbitrary goal position. The presented method shows
a good performance on the pushing task.

1 Introduction

In the field of embodied cognitive science, it is a hypothesized that perception
and cognition rely on internal simulation processes which involve neural struc-
tures for motor control [1, 2, 3, 4]. Internal simulation requires forward models
(FMs) which predict the sensory consequences of motor actions. These predic-
tions can be used for an iterative simulation of sequences of motor commands,
a process closely related to motor planning. Internal simulation of this kind
faces two main problems: First, the FM has to be precise enough to allow for
an iterative prediction without ending up in a completely erroneous final state.
Second, one has to find a way to avoid the combinatorial explosion which occurs
if several motor commands are tested in parallel at each iterative prediction step.

In the present study, we develop a procedure to deal with both problems and
demonstrate its performance for the task of visually guided block-pushing with
a robot arm. On the one hand, we offer a technical solution for motor planning
based on multi-layer perceptrons [5] and the optimization method “differential
evolution” [6], on the other hand, our model can be interpreted as an instance
of simulation theories of visual perception [3]. However, the second aspect is
beyond the scope of this paper, and we would like to refer the reader to [7] for
further information on this topic. Our optimization approach to motor planning
is related to the work by Hoffmann [2] (who used “simulated annealing” for the
generation of movement sequences for a mobile robot) and by Tani [8] (who used
“chaotic steepest descent” for a similar purpose).

2 Setup and task

The used robot arm setup and the world coordinate system are shown in Fig. 1.
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Fig. 1: Left: The robot arm in a pushing posture with the block in front of
the gripper. Upper right: Base coordinate system on the table surface (see also
left picture). The working area for pushing movements is shown in gray color.
A robot arm posture is defined by the gripper position (x, z) and the pushing
orientation α. Lower right: Tool held by the gripper during pushing [7].

For the block-pushing task presented in this study, movements of the arm are
restricted to a 2D plane at the white table surface. With the help of a special
tool held in its gripper, the robot arm pushes a small block around this surface.
The posture of the robot arm is defined by the workspace coordinates x and z
of the gripper tip and by an angle α indicating the pushing orientation. The
remaining degrees of freedom are fixed, resulting in robot arm postures as shown
in Fig. 1 (left). Collision-free operation is only possible for a restricted area of the
table surface defined by x ∈ [330 mm; 730 mm] and z ∈ [−69.5 mm; 250.5mm]
(α ∈ [−40◦; +40◦]). Visual data is collected with a camera that records the
entire white table surface.

The task of the robot arm is to push the block from a start position to a
goal position within the working area (with varying orientations). The general
pushing direction is directed away from the base joint. The block is first placed
at its goal position by the operator and afterwards at its start position. At
both positions, a camera image is recorded. From these images, a sequence
of motor commands is determined by which the robot arm manages to push
the block from the start to the goal. To generate this sequence by an internal
simulation process, a visuokinesthetic FM is required. The FM predicts visual
data (position and orientation of the block in the camera image) and kinesthetic
data (position and orientation of the gripper as indicators of the arm posture)
resulting from a given movement. Visual prediction is a difficult task because of
the high dimensionality of visual data. For this reason, we drastically reduced
its dimensionality. This is possible since we only have to encode the position
and orientation of the block.

First, the camera image is converted into a monochrome image in which
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all pixels of the block get maximum intensity and all other pixels zero intensity.
From this image, a lowpass-filtered and subsampled version with only 3×3 pixels
is created. The resulting 9 pixel intensity values encode the position of the block.
The orientation of the block is encoded by the four values of a compass filter
histogram. Four compass filters enhance the edges of the block segment in the
full-size monochrome image in four different directions (0◦, 45◦, 90◦, and 135◦).
After thresholding, the remaining pixels in each image are counted to give a
value for the distribution of edges in a given direction [9].

3 Network structure and training

The visuokinesthetic FM for the internal simulation process has the following
inputs: First, the current gripper position and orientation as kinesthetic input
s(t)
KIN = (xt, zt, αt) (t denotes the time step); second, a 13-dimensional vector

s(t)
VIS = (s(t)

POS, s
(t)
OR) comprising the 3× 3 pixel intensities encoding the block posi-

tion s(t)
POS and the four values of the compass filter histogram s(t)

OR; and third, a
motor command mt = (Δxt,Δzt,Δαt). The output of the FM consists of the
visuokinesthetic state of the next time step, encoded by ŝ(t+1)

KIN and ŝ(t+1)
VIS .

Learning this relationship is a function-approximation task; for this reason,
the FM is implemented by a set of multi-layer perceptrons (MLPs) [5]. 37500
learning examples for the MLPs were generated by systematically moving the
gripper of the robot arm along different trajectories through the working area
while it was pushing the block. The movements were either translations in the
current gripper direction α of a size of 10, 20, or 30 mm or rotations by a small
angle Δα = 5◦. At each movement step, a full learning example was collected.

The best prediction performance was obtained by three separate MLPs for
each output ŝ(t+1)

KIN , ŝ(t+1)
POS , and ŝ(t+1)

OR , with the already described input encoding
and pattern set size, and with plain online backpropagation as learning algorithm
[5]. Each MLP of the visuokinesthetic FM has a single hidden layer with 10 units
with hyperbolic tangent as activation function. After 300 epochs of network
training with normalized data, we obtained the following prediction accuracy on
a test set: The average absolute percentage difference between the correct output
and the network-generated output amounts to less than 3% for the position and
orientation output units and to nearly 0% for the kinesthetic output units (the
percentages are computed in relation to the desired output).

4 Motor planning as optimization problem

The internal simulation process for motor planning requires an iterative ap-
plication of the visuokinesthetic FM. For t = 1 with known sensory input
s1 = (s(1)

KIN, s(1)
VIS), an adequate motor command m1 has to be generated (without

executing it). The FM predicts the sensory state ŝ2 = (ŝ(2)
KIN, ŝ(2)

VIS) of the next
time step t = 2, a second motor command m2 is generated (without execution),
the FM predicts the sensory state for t = 3 on the basis of the input (ŝ2,m2),
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Fig. 2: The iterative application of the visuokinesthetic FM, depicted exemplary
as chain of three FMs. The initial sensory state is used as input to the chain,
the final output ŝ(3)

VIS of the last FM is constrained to be as close to the desired
sensory goal state s∗ as possible (indicated by the left-pointing arrow from s∗).

and repeatedly so, until the number of prediction steps is equal to a predefined
maximum N . Such an iterative application of an FM is shown in Fig. 2.

In the block-pushing task, the initial sensory state s1 = (s(1)
KIN, s(1)

VIS) is deter-
mined from the initial posture of the robot arm (ready to push the block from
the start position) and the camera image showing the block at this position. The
sensory goal state s∗ = s∗VIS is determined from the camera image that shows
the block at its goal position. It is important to note that sKIN is not part of the
sensory goal state. The system has no direct way to determine the kinesthetic
state at the goal position. A movement sequence {mt} is successful if the differ-
ence between ŝ(N)

VIS and s∗ is very small. If {mt} is actually executed afterwards,
the final real sensory state s(N)

VIS may differ considerably from s∗, depending on
the precision of the prediction by the visuokinesthetic FM. Thus, a precise FM
is an important precondition for a realistic internal simulation process.

The optimization problem for the generation of a movement sequence is
stated as follows. The initial sensory state is given by s1 = (s(1)

KIN, s(1)
VIS), the

sensory goal state by s∗ = s∗VIS. The number of iteration steps is set to a fixed
number N . The optimization goal is the minimization of the difference between
ŝ(N)
VIS and s∗. The free parameters in the optimization process are the motor

parameters in the sequence {mt} (t = 1..N). They are constrained such that
translatory movements are only simulated in direction of the respective current
gripper orientation (like in the training data).

Differential evolution (DE) [6], an evolutionary optimization algorithm, is
used as optimization method with a population size of NDE = 50 and a maximum
number of Gmax = 15 generations (for further details see [7]). The energy E
which indicates the fitness of a movement sequence (the smaller E the better) is
computed by a criterion which defines a tradeoff between position and orientation
accuracy. Moreover, penalty terms are added to E if any motor parameter mt is
outside the range that the MLPs of the visuokinesthetic FM have encountered
during training, or if any estimated kinesthetic state ŝ(t)

KIN during the simulation
of the movement sequence is outside the working area.

Since the distance between the start and the goal is not known beforehand,
the optimization process has to be carried out with different numbers of itera-
tion steps N . We varied N between 7 and 15. Considering the population size
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22.7 / 4.6 15.9 / 10.6 12.9 / 5.4 67.4 / 1.5

Fig. 3: Simulated trajectories for 4 different start and goal positions (for details
see text). The figures underneath each trajectory indicate the final position error
(left; in mm) and the final orientation error (right; in degrees).

NDE = 50 and the maximum number of generations Gmax = 15, the computation
of the best movement sequence required the internal simulation of 6750 different
movement sequences. The sequence which resulted from the optimization trial
with the lowest final energy E was picked as overall best movement sequence.
However, for a fair comparison between optimization trials with a different iter-
ation depth N , we multiplied E before the comparison with an “increase factor”
of 1.2N . This is motivated by the fact that the precision of the final prediction
gets worse the more internal simulation steps have to be carried out.

5 Results

The results that are reported here were generated in an experiment in which
100 movement tasks with different random start and goal positions were solved.
Certain constraints were applied to these randomly generated movement tasks
to ensure that they are geometrically possible, and that the overall orientation
difference is not too large. For each movement task, the optimization process
generated a movement sequence by the algorithm described in the preceding
section. By executing this sequence, the block would have been ideally pushed
to the goal position which is encoded by s∗ = s∗VIS. The corresponding desired
final arm posture is denoted as s∗KIN = (x∗, z∗, α∗), the actual final arm posture
after the movement as s(N)

KIN = (xN , zN , αN ).
The mean position error, defined as the Euclidean distance between (xN , zN )

and (x∗, z∗), amounted to 27.9 mm for the 100 movement tasks (σ = 18.2 mm),
the mean orientation error, defined as absolute value of the difference between
αN and α∗, to 6.0 degrees (σ = 6.3 degrees). For the mean movement distance,
defined as the distance between the start and the goal position of a movement
task in the (x, z) space, we obtained 175 mm. The percentage ratio between the
mean position error and the mean movement distance was 16.0%. On average,
a movement sequence had a length of 8.6 steps. The movement distance was
correlated to the length of the corresponding movement sequence (r = 0.33) and
to the resulting position error (r = 0.73).
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Figure 3 shows the movement sequences that were generated in 4 of the
100 movement tasks. Each panel depicts the complete working area, the x-axis
pointing in the vertical direction, the z-axis in the horizontal direction. The
goal position (x∗, z∗) is indicated by a circle with a diameter of 20 mm in each
panel. The longer bar of the cross that marks the center of the circle points
into the goal orientation α∗. Successive movement steps within a sequence are
separated by bars that are orthogonal to the movement direction. The first three
examples show rather precise solutions over various movement distances, while
the example on the right illustrates a failed solution.

6 Conclusions

We presented a method for movement planning for a block-pushing task based
on visuokinesthetic prediction and on optimization by DE. The performance of
our method is rather good, even movement sequences with a length of 15 steps
are generated with tolerable final position and orientation errors (leftmost trial
in Fig. 3). However, success is not always guaranteed. The most likely reason
for failed trials is a sub-average prediction accuracy of the visuokinesthetic FM
in some regions of its input space. While the kinesthetic prediction by the FM
is nearly flawless, the visual position and orientation data is predicted with an
average accuracy of 3%. This sounds tolerable, but even small prediction errors
accumulate easily, rendering the final output useless. This is reflected by the
strong correlation between movement distance and final position error. Thus,
further research has to focus on the training of even more precise FMs.
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