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3- Institut Mondor de Médecine Moléculaire, Plate-forme génomique, France
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Abstract. DNA microarrays technology has emerged as a major tool to
explore cancer biology and solve clinical issues. The response to chemother-
apy represents such an issue because its prediction would make it possible
to give the patients the most appropriate chemotherapy regimen. We pro-
pose a new method of probes selection, and we study the performances
of predictors designed with multi-objective neural network (MOBJ-NN)
taking as input the expression levels of the selected probes. The novelty
of this paper is to link the method of probes selection and the MOBJ-NN
model for designing multi-gene predictors.

1 Introduction

The development of post-genomic high-throughput measurement technologies
and the associated computational analysis tools give the opportunity to iden-
tify for each tumor, a profile based on level of mRNA expression. In breast
cancer, neoadjuvant chemotherapy (treatment given prior to surgery) makes it
possible to check, in vivo, breast tumor chemosensitivity. A pathologic com-
plete response (PCR) at surgery is correlated with an excellent outcome while
residual disease (NoPCR) is associated with a poor outcome. An accurate pre-
diction of tumor sensitivity to preoperative chemotherapy is an important issue
because patients with predicted residual disease may avoid the prescription of
an inefficient treatment and may be allocated to other treatments. The design
of multigene predictors of the patients’ class, PCR or NoPCR, is a supervised
learning problem. The methods that are the most commonly used for selecting
a subset of DNA probes are based on the identification of probes that depart
the most from a random distribution of expression levels. The DNA probes are
ranked and the genes are selected according their p-values of a t-test. In these
methods, the forthcoming classifier models are not involved in the selection pro-
cess (such mathod are often said to be part of a ‘filtering approach’). In some
other studies the classifier model is involved in the process of DNA probes se-
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lection (‘wrapper approach’). In the present article we present a new method of
probe selection in a filtering approach, and the performance of predictors taking

2 Experimental data

The clinical trial from which the data were collected has been conducted at the
Nellie B. Connally Breast Center, University of Texas M.D. Anderson Cancer
Center. It is described in details in [1]. One hundred thirty-three patients with
stage I-III breast cancer were included in the trial conducted at the MD Ander-
son Cancer Center in Houston (USA) for 82 patient cases and at the Institut
Gustave Roussy in Villejuif (France) for 51 cases. The pretreatment gene ex-
pression profiling was performed with oligonucleotide microarrays (Affymetrix
U133A, made out of 22283 DNA probes) on fine-needle aspiration specimens.
The training set was composed of the former 82 patient cases and the indepen-
dant validation set was the latter set of 51cases. At the completion of neoadju-
vant chemotherapy, all the patients had surgical resection of the tumor bed, with
negative margins. The pathologic complete response, PCR, was defined as no
histopathologic evidence of any residual invasive cancer cells in the breast, and
the non pathologic complete response, NoPCR, was defined as any residual can-
cer cells after histopathologic study. All the data of the clinical trial are available
online at URL http://www.bioinformatics.mdanderson.org/pubdata.html.

3 Method of probes selection

We assigned two sets of expression levels to any probe s, the sets Ep(s) and
En(s), computed from the training data as follows [2]. Let mp(s) and sdp(s)
be the mean and standard deviation of the expression levels of probe s for the
PCR training cases, and let mn(s) and sdn(s) be that of the NoPCR training
cases. The set of expression levels of the PCR training cases was defined as the
set difference Ep(s),

Ep(s) = [mp(s) − sdp(s),mp(s) + sdp(s)] \ [mn(s) − sdn(s),mn(s) + sdn(s)]

and conversely for the NoPCR training cases,

En(s) = [mn(s) − sdn(s),mn(s) + sdn(s)] \ [mp(s) − sdp(s),mp(s) + sdp(s)].

Discrete probes’ predictions. For any patient case, the individual prediction
of a probe was a discrete value in set {pcr, nopcr, unspecified} : pcr if the
expression level of patient p lied within the interval Ep(s) and nopcr if it lied
within En(s). Otherwise, the individual prediction value was unspecified.

Probes’ valuation function. Let p(s) be the number of PCR training cases
correctly predicted pcr by probe s, and let n(s) be the number of the NoPCR
training cases correctly predicted nopcr by the probe. The valuation function of
the probes was defined so as to favor probes which correctly predicted high num-
bers of training cases and moreover, whose sets of correctly predicted training
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cases were ‘good’ samplings of the training set. To this end, we have consid-
ered the ratios p(s)/P and n(s)/N of correctly predicted training cases. The
valuation function v(s), v(s) ∈ [0, 1], was defined as:

v(s) = 0.5 ×
(

p(s)
P

+
n(s)
N

)
.

4 Classifiers used as predictors

In [1], K. Hess & al. selected the probes according to the p-value of a t-test. With
this probe selection method, they found that the best predictor for the dataset
at hand was made out of 30 probes, whose expression levels were weighted after
the result of a diagonal linear discriminant analysis (predictor ‘DLDA-30’). In
the present article, we have considered the 30 probes of highest values v(s) (see
[2] for an extensive analysis of the performances in function of the number of
selected probes), and the performances of several classifiers: majority decision,
support vector machine (SVM) [3], multi-objective neural networks [4] (MOBJ-
NN) with several selection strategies, and a ‘committee machine’ aggregating
these models.

We have defined the k-probes majority decision predictor as the set of the k
top ranked probes together with the majority decision criterion: for any patient
case, when the majority of ‘pcr’ and ‘nopcr’ predictions of the k top ranked
probes was ‘pcr’, the patient was predicted to be ‘PCR’, and when the ma-
jority was ‘nopcr’ the patient was predicted to be ‘NoPCR’. In case of tie the
patient was predicted ‘UNSPECIFIED’. When computing the performances of
the predictor, a false negative was a PCR patient case predicted NoPCR or
UNSPECIFIED, and conversely for the false positives.

Supervised learning involves de minimization of two conflicting objective
functions that are related to training set error φe(·) and model complexity
φc(·). For most problems, the minima of these two functions do not coincide
in the parameter’s space, what suggests that they can not be jointly minimized.
One of the most popular current approaches for solving this problem [3] aims
at minimizing φc(·) by maximizing the separation margin between classes in a
kernel-induced feature space. The solution of the optimization problem in the
feature space yields a convex optimization formulation, since the kernel non-
linear mapping do not appear directly in the final objective functions. Despite
of the elegant solution of the convex optimization problem in the feature space
for the Support Vector Machine (SVM) [3], the user needs to set a margin pa-
rameter in advance. The problem has not changed in its basics and the user is
faced again with the same original problem that is to obtain a proper balance
between φe(·) and φc(·).

Multi-objective neural networks learning [4] treats neural networks super-
vised learning as a non-convex optimization problem by trading-off φe(·) and
φc(·) directly. In this approach, the concept of global optimality is substituted
by the one of Pareto-optimality. After optimization, the Pareto-set contains
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the non-dominated solutions [4] that can not be improved in one of the objec-
tives without degrading the other. The decision making procedures follow the
Pareto-set generation: a solution is now selected according to a pre-established
criteria. The simplest selection approach is to minimize the error of a validation
set, but this requires data availability and further computational costs due to
cross-validation. Other selection strategies that explore Pareto set properties
have been applied successfully to classification and regression problems [5, 6].

5 Results

The performances of the predictors (accuracy, sensitivity and specificity) have
been evaluated on the learning set of patient cases and on the independant
validation set.

On the validation set, the performances of majority decision predictor were:
accuracy=0.86, sensitivity=0.92, specificity=0.84. It outperformed the predic-
tor DLDA-30 [1] whose performances on the validation set were: accuracy=0.76,
sensitivity=0.92 and specificity=0.71. On the training set, the majority de-
cision predictor’s performances were: accuracy=0.84, sensitivity=0.81, speci-
ficity=0.85. We have computed an estimation of the generalisation error by a
leave one out cross validation on the set of all the patient cases (82 learning
cases and 51 validation cases). The performances were: accuracy=0.77, sensi-
tivity=0.82, specificity=0.75.

The MOBJ solutions were all obtained for a neural network with 10 neurons
in the hidden layer. Three different decision strategies that do not depend on
a validation set were used for choosing the MOBJ-NN solution. The first one
selected the model closer to the point (0, 1) (maximum sensitivity and speci-
ficity) in the ROC space [7] given by the training data. The second one selected
the model in the intersection between the error and the norm curves given by
solutions in the Pareto set. The third one selected the solution with maximum
margin in the Pareto set. Data was used in its original expression levels form
as well as in its discrete form. Resampling of the minority class was also ac-
complished in order to compensate the unbalance of the training set. Therefore,
models were selected with both balanced and unbalanced training sets. Since
the validation set was not used to actually select a model, it will be referred to
simply as test set from now on.

In order to present the results of all models (including the majority decision
predictor) in a single figure, the distance of each solution in relation to the
optimal point (0, 1) in the ROC spaces [7] of both training and test data sets were
calculated and presented in Figure 5. This form of representing the solutions
gives an idea of the sensitivity and specificity performances of each model in both
training and data sets. The straight line given by dtest = dtraining corresponds
to the solutions that yield the same performance in both training and test sets.
The solutions that are below the line perform better in the test set and those
that are above the line perform better in the training set. According to this
performance measure, the best solutions are those that are close to the line and

74



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

dtraining

d
te

s
t

30-probe majority voting
MOBJ-NN (Unb/Intersection)
MOBJ-NN (Unb/ROC)
MOBJ-NN (Bal/Intersection)
MOBJ-NN (Bal/ROC)
SVM
MOBJ-NN (Bal/Max.Margin)
Committee Machine

Fig. 1: Distances in the ROC space of the training and test sets for the MOBJ-
NN, SVM, 30-probe majority voting models and committee machine.

near the origin of the coordinate system. This assumption is made because the
induction principle on which supervised learning is based assumes that training
and test data are i.i.d (identically and independently distributed) and, therefore,
a model should perform nearly the same in both sets, since they are assumed to
have been sampled from the same generator function. Shifts in performance in
relation to one of them may be due to a small sample size that may yield a bias
in relation to a specific region of the input space. Figure 5 gives, therefore, an
idea of which models obey this general trade-off principle between training and
test data.

It can be observed from the figure that the MOBJ-NN models with decision
strategy based on the ROC curve tend to benefit training regardless of the
test set. In fact these solutions tend to minimize the training set error and,
consequently, to over-fit the data due to the small number of samples available.
The intersection decision making with both balanced and unbalanced training
sets resulted on relatively good and well balanced solutions between training
and test sets, since they are generally close to the straight line and not far from
the origin. The maximum margin MOBJ-NN, SVM and the 30-probe majority
voting tended to perform better in the test set, although SVM resulted on a
better balance between the two sets. Since there are three models below (test
set oriented) and two above (training set oriented) the straight line, a committee
machine with two representatives from each side (the closest ones) was also
implemented.

The resulting aggregated model yielded a better performance on training
while maintaining the best performance in the test set.
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6 Conclusion

The method of probes selection that we have proposed has brought predictors
which significantly outperformed the best predictor to date for the same data.
The simplest of these predictors was the discrete majority decision predictor
(DMP). We have shown that under several strategies of solution selection, the
MOBJ-NN predictors achieved the same performances on the validation set.
None of the strategies of solution selection did bring predictors achieving better
performances on the testing set, together with the best performance achieved
by the DMP on the validation set. Faced to this tradeoff, we have assessed the
performances of several models in the ROC space of the training and validation
sets, and we have proposed a ‘committee model’ for improving the performances
of the prediction on the test sets, without decreasing the performances on the
validation set.

From this study, we might conclude that a generator function exists which
associates the expression levels of the DNA probes to the patient’s pathological
responses, and that this generator function was, at least partially, identified by
the method of probes selection and the different classifier models described in
this paper.
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