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Abstract. This paper introduces a new concept to the processing of graph struc-
tured information using self organising map framework. Previous approaches to
this problem were limited to the processing of bounded graphs. The computational
complexity of such methods grows rapidly with the level of connectivity, and are
restricted to the processing of positional graphs. The concept proposed in this paper
addresses these issues by reducing the computational demand, and by allowing the
processing of non-positional graphs. This is achieved by utilising the state space of
the self organising map instead of the states of the nodes in the graph for processing.

1 Introduction
Self-Organizing Maps (SOMs) are unsupervised learning models that allow the map-
ping of high-dimensional data onto a low-dimensional computational grid (display space)
preserving the topology of the input space [1]. Early versions of SOMs included models
capable of processing vectorial data as well as continuous signals [1]. The processing
of more general types of data structures such as graphs, while considered in [1] was not
fully developed until more recently [2, 3].

Graphs provide a generic means for data representation. With graphs it is possi-
ble to encode relationships between entities in a dataset. Graphs contain vectors and
data sequences as special cases, and hence, graph structured data can be regarded as a
superset for the most common methods of data representation.

Traditional data processing methods, e.g. SOMs, multilayer perceptrons, rely on
a vectorial representation of data. Pre-processing was necessary in order to “squash”
graph structured information into a vectorial form. Such pre-processing can result in
the loss of important structural or relational information.

Machine learning methods can be particularly suitable for data processing tasks in-
volving graphs due to their proven insensitivity to noise and the ability to generalize
to unseen data. An example of such machine learning approaches is the Graph Neu-
ral Network [4] which is capable of processing generic graphs in a supervised learning
paradigm. This paper proposes a method in the unsupervised learning paradigm for
the processing of graph structured data. A first work in this area is described in [2]
which proposes a method known as the SOM for structured data (SOM-SD), capable
of processing trees with bounded outdegree. The idea was consequently extended in
[3] to allow the processing of more general types of bounded graphs, e.g. which can
encode contextual information. The approach in [3] has become known as the Con-
textual SOM-SD (CSOM-SD). A key issue in using the SOM-SD or CSOM-SD is the
requirement of knowing the maximum outdegree of graphs a priori. In this paper, a
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new concept of processing graph structured information is proposed to enable SOMs to
encode much more generic types of graphs, e.g. unbounded graphs. Unbounded graphs
may contain cyclic paths, or have an infinite number of branches. The existing methods,
i.e. SOM-SD and CSOM-SD, cannot deal with this class of graphs, since they cannot
handle undirected arcs and unbounded graphs. In addition, the method proposed in this
paper has a lower computational complexity compared with SOM-SD and CSOM-SD.

This paper is organized as follows: The SOM-SD is briefly described in Section 2.
A new way for processing and training a SOM on structured data is proposed in Sec-
tion 3. Section 4 and Section 5 give experimental results and conclusions respectively.

2 SOMs for structured data
An approach in [2] enabled SOMs to map graph structured information by process-
ing individual nodes of a graph, and by incorporating topological information about a
node’s offsprings in a directed acyclic graph. The introduction of CSOM-SD [3] ex-
tended such capabilities towards the processing of undirected and cyclic graphs. Both
approaches include the standard SOM as a special case, and when applied to graphs, are
restricted to learning domains for which the upper bound of any node’s degree is known
a priori (e.g. the maximum number of neighbors for any node in a graph is known a
priori). In addition, the computational demand for such methods can be prohibitive
for learning problems involving a high level of connectivity. This is best described by
looking at how the SOM-SD processes data.

The basic SOM consists of a q-dimensional lattice of neurons representing the dis-
play space. Every neuron i of the map is associated with an n-dimensional codebook
vector mi = (mi1, . . . , min)T , where T transposes the vector. The neurons have
a hexagonal neighborhood relationship; the most commonly used arrangement. The
SOM is trained by updating the elements of mi through a two step training procedure:
Step 1: One sample input vector u is randomly drawn from the input data set and

its similarity to the codebook vectors is computed. When using the Euclidean
distance measure, the winning neuron is obtained through:

r = arg min
i
‖u−mi‖ (1)

Step 2: mr itself as well as its topological neighbours are moved closer to the input
vector in the input space. The magnitude of the attraction is governed by the
learning rate α and by a neighborhood function f(∆ir), where ∆ir is the topo-
logical distance between mr and mi. The updating algorithm is given by:

∆mi = α(t)f(∆ir)(mi − u), (2)

where α is a learning rate decreasing to 0 with time t, f(.) is a neighborhood
function. The most commonly used neighborhood function is the Gaussian func-
tion such as f(∆ir) = exp

(
−‖li−lr‖2

2σ(t)2

)
, where the spread σ is called the neigh-

borhood radius which decreases with time t, lr and li are the coordinates of the
winning neuron and the i-th neuron in the lattice respectively.

Steps 1 and 2 together constitute a single training step and they are repeated a given
number of times. The number of training steps must be fixed prior to the commence-
ment of the training process because the rate of convergence in the neighborhood func-
tion and hence the learning rate are calculated accordingly.
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To allow for the processing of structured data this training algorithm is extended [2]
by incorporating information about a node’s neighbors. To achieve this, we assign the
ui to be the label of the i-th node in a graph, then form an input vector for the SOM
by concatenating the label with the coordinates of the winning neuron of all neighbors
(i.e., nodes reachable via a directed arc) of the node. These coordinates are referred to
as the states of neighbors. Formally, an input is defined as a vector xi = (ui,ych[i]),
where ych[i] is the concatenated list of states (coordinates of the winning neuron) of
all the children of a node i. Since the size of vector ych[i] depends on the number of
offsprings, and since the SOM training algorithm requires constant sized input vectors,
padding with a default value is used for missing offsprings or for nodes with less than
the maximum outdegree on a graph. The training algorithm of a SOM is altered to
account for the fact that an input vector now contains hybrid information. Eq. 1 and
Eq. 2 are respectively changed as follows:

r = arg min
i
‖(xj −mi)T Λ‖ (3)

∆mi = α(t)f(∆ir)(mi − u) (4)

where Λ is a n× n dimensional diagonal matrix; its diagonal elements λ11 · · ·λpp are
set to µ1, all remaining diagonal elements are set to µ2. The constant µ1 influences the
contribution of the data label component to the Euclidean distance, and µ2 controls the
influence of the states to the same distance measure.

A new step added to the training algorithm propagates structural information:

Step 3 The coordinates of the winning neuron are passed on to the parent node which
in turn updates its vector y accordingly.

The SOM-SD requires the processing of data in a strict causal manner (i.e. from
the leaf nodes towards the root). It is not possible to process nodes in any other order
since otherwise in Step 3 it is possible that not all states of all neighbors are available.
An extension which circumvents this problem has been proposed in the CSOM-SD [3].
The CSOM-SD builds on the SOM-SD by adding new steps to the training procedure
to take both ancestors and descendants of a node into account. This is similar in nature
to SOM-SD, and hence, the SOM-SD can be reduced to the CSOM-SD accordingly.

3 The GraphSOM
The computational demand of a SOM-SD grows with Nk(p + qn), where N is the
total number of nodes in the data set, k is the number of neurons on the map, p is the
dimension of the data label attached to the nodes in a graph, q is the dimension of the
map (typically q = 2), and n is the maximum number of neighbors of any node in
a graph. Thus, the complexity of the training algorithm increases linearly. However,
there is a dependence between N , k, and n in many practical learning problems. An
increase in N , p, or n often requires a larger mapping space k. This is particularly
the case for large scale learning problems that contain only few redundancies in the
feature space covered by the data. Moreover, in many data mining applications, n can
become very large (e.g. n >> k) which in turn can require large k. In other words, the
computational complexity for large scale learning problems is close to a quadratic one.

A further observation is that a SOM-SD may present redundant information to the
network because it concatenates state information of every neighbor to the network
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Fig. 1: A 2-dimensional map of size 2× 5 (left), and an undirected graph (right). Each
hexagon is a neuron. ID, codebook, and coordinate value for each neuron is shown. For
each node, the node number, and coordinate of best matching codebook is shown.

input. Redundancies occur when several neighbors are mapped to the same location on
the map. This likelihood increases with n, and becomes unavoidable when n > k. In
addition, the SOM-SD can only process positional graphs since a change in the ordering
of neighbors changes the input vector. There are many applications for which the order
of neighbors is of no significance.

An approach that addresses these issues is by changing the way state information
is added to an input vector. Instead of concatenating the mappings of all individual
neighbors it is possible to simply concatenate the activation (state) of the map with
respect to a node’s neighbors. Formally, when processing a node i the input to the SOM
is xi = (ui,Mne[i]), where ui is defined as before, and Mne[i] is a k dimensional
vector containing the activation of the map M when presented with the neighbors of
node i. An element Mj of the map is zero if none of the neighbors are mapped at
the j-th neuron location, otherwise it is the number of neighbors that were mapped
at that location. As an example, assume a SOM and graph as illustrated in Fig. 1.
For simplicity we assume further that no data label is associated with any node in the
graph. Then when processing node w = 3 the network input is the k dimensional vector
x3 = (0, 0, 2, 0, 0, 1, 0, 0, 0, 0). It can be observed that x3 summarizes the mappings
of the neighbors of node 3 by listing the two activations at coordinate (1, 3), the third
neuron, and one activation at coordinate (2, 1), the sixth neuron. Then the mapping of
node 3 can be computed, and the information be passed onto its neighbors in the same
way as is done for the SOM-SD. Note that the input remains unchanged regardless
of the order of the neighbors. Note further that the dimension of x remains constant
regardless of the maximum outdegree of any node in the dataset. We shall refer to this
approach as the GraphSOM.

In comparison, the dimension of input vectors for the same graph when processed
with SOM-SD is 6 (because q = 2 and n = 3). Thus, it can be observed that the
number of computations with the GraphSOM is similar to CSOM-SD when processing
small graphs. But since the input dimension is independent of the outdegree n, the
GraphSOM becomes more and more efficient as the connectivity (and consequently
the size) of a graph increases. When dealing with large maps then the approach can
be approximated quite well by consolidating neighboring neurons into groups. Such
approximation is valid since only those nodes are mapped in close proximity which
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share the greatest similarities. This leaves the granularity of the mappings unchanged
but allows a more compact representation of Mne[i]. For instance, when using a 2 × 5
grouping, the network input for node 3 becomes x3 = (1, 2, 0, 0, 0). A more coarse
grouping can be chosen to achieve greater speed gains at the cost of some accuracy in
the representation of the state of the map.

Nodes can be processed in an arbitrary order by utilizing the mappings of neighbors
from the previous iteration (if a mapping is not available at a current iteration). At
the first iteration, any unknown mapping is assumed to be a random coordinate. The
motivation for this approach is based on [3] which observes that the mappings between
successive iterations can be assumed to become very similar as training proceeds. By
using the mapping at a previous iteration, this is a valid approximation which allows
the relaxation of the processing order of nodes.

Some advantages of the GraphSOM when compared to the (C)SOM-SD are:
• The computational demand is reduced when dealing with large graphs.
• The computational demand can be scaled arbitrarily through a grouping of neu-

rons (at the cost of some inaccuracy in the representation of the graph).
• The input dimension is independent of the level of connectivity in a graph.
• The approach allows the processing of positional and non-positional graphs.
• It contains the CSOM-SD and the SOM-SD as special cases.

The approach is a generalization of the SOM-SD in that it can consider the order of
nodes by simply concatenating the state of the map when processing each of the in-
dividual neighbors. The input vector in this case will be very sparse but the same
behaviour as for the SOM-SD is obtained.

In the context of sequence processing, the idea to present the activation map as
contextual information has been pursued by some researchers [6]. In particular, the
Merge SOM model [6] stores compressed information of the winner in the previous time
step, whereby the winner neuron is represented via its content rather than its location
within the map. The content of a neuron i consists of the weight wi and the context
ci. These two characteristics of neuron i are stored in a merged form, i.e. as linear
combination of the two vectors. It should be stressed that this approach is different
from the one proposed here.

4 Experiments
This section provides a preliminary assessment of the differences in performance be-
tween SOM-SD and the proposed GraphSOM when applied to a practical learning prob-
lem. The basis for the comparison is a recent application of the SOM-SD to the clus-
tering of XML formatted scientific documents which was performed at an international
competition (which consequently was won by the SOM-SD approach) on data mining
in structured domains [5]. The data-mining competition defines Macro F1 and Micro
F1 as the basis for the performance comparisons. The dataset consists of 12, 107 XML
formatted documents, half of which are used for training, the remainder for testing pur-
poses. XML is easily represented as a tree-like structure. The analysis of the dataset
in [5] revealed that the corresponding graph structures in the training set feature a total
of 3, 966, 123 nodes, and a maximum outdegree of 1, 023. Training a SOM-SD on this
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dataset was estimated to take 6, 818 days on 3GHz Pentium based hardware. As a con-
sequence, pre-processing was applied in [5] by using some heuristics which reduced
the number of nodes in the training set to 108, 523, and the maximum outdegree to 66.
Training a SOM-SD consisting of 8, 800 neurons on these pre-processed data required
16 hours. The best performance obtained by the SOM-SD on this learning problem
was: Macro F1 = 0.34, Micro F1 = 0.38.

The GraphSOM was applied to the same learning task but no pre-processing of the
data was applied. The GraphSOM also used 8, 800 neurons though these were grouped
into groups of 7 (a neuron and its six neighbors), and into groups of 18 (added 12
direct neighbors to the group of 7). This produced an input dimension of 1, 258 and
489 respectively. In comparison, the input dimension for the SOM-SD when using pre-
processed data was 2×66 = 132. Despite a larger input dimension and a larger number
of nodes in the training set for the GraphSOM, the training times were respectively 31
hours when using groups of 7, and 16 hours when using groups of 18. It turned out
that most input vectors for the GraphSOM are sparse since the average outdegree for
this dataset is just 48, and hence, Eq. 3 and Eq. 4 can be implemented much more
efficiently. Additionally, the GraphSOM only requires to store the indexes of winning
neurons rather than their coordinates which also contributed to a reduced computational
demand. Using the groups of size 7, the performances were Macro F1=0.39 Micro
F1=0.36. The group size 18 produced Macro F1=0.36, Micro F1=0.32. This shows
that the learning task does not utilize positional information in the structure, that the
pre-processing step for the SOM-SD may have removed some relevant features, and
that the GraphSOM can process large datasets more efficiently and without requiring
pre-processing.

5 Conclusions
This paper proposes a new way of processing structured information by a Self-Orga-
nizing Map. It was demonstrated that in comparison with preceding methods, the ap-
proach will reduce the computational demand when dealing with large graphs while
increasing the types of graphs that can be encoded. The proposed method scales well
with the size of the map by allowing the grouping of “topologically near” neurons into
groups, and hence, allows the increase of speed at a minimal cost on accuracy. The
SOM-SD and CSOM-SD methods are contained as special cases, and hence, can be
assumed to exhibit the same behaviour when dealing with tree structured or positional
graphs.
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