
Petri nets design based on neural networks
Edouard LECLERCQ, Souleiman OULD EL MEDHI, Dimitri LEFEBVRE

GREAH - Université du Havre - 25, rue Philippe LEBON - BP 540 - 76058 LE HAVRE Cedex

Abstract. Petri net faulty models are useful for reliability analysis and fault
diagnosis of discrete event systems. Such models are difficult to work out as long
as they must be computed according to alarm propagation. This paper deals with
Petri net models synthesis and identification based on neural network approaches,
with regard to event propagation and to state propagation dataset. A learning
neural algorithm is proposed to build Petri net models, these models are suitable
for the diagnosis of discrete event systems.

1 Introduction

Fault diagnosis is an important issue for industrial processes, because faults often lead
to unaccepted waste of productivity [1]. Diagnosis methods involve the analysis of
collected measures, the estimation of critical parameters, and the comparison with
reference models. For discrete event systems (DES) modelled by ordinary Petri nets
(PN), diagnosis may be achieved with two distinct approaches. On the one hand,
faults are modelled by forbidden states and we suppose that events are observed. It is
about to estimate the forbidden markings from a partial observation of events [2]. On
the other hand, faults are represented by events and we suppose that states are
partially observed [3]. We focus on model synthesis and identification in sight of
diagnosis [4], [5], [6], [7], [8]. In order to obtain the PN diagnoser, the first goal is to
build a PN model of a process without a priori knowledge about the structure of the
PN. This paper deals with the PN structure design from measured data.. The design is
made by a neural network and the error back propagation learning algorithm. Other
learning methods to build PN have been investigated such as genetic algorithm [9] or
fuzzy logic [10].
 Our work concerns the design of the PN from observations. These observations
could be either events time sequences or markings time sequences. From the point of
view of events observations, several methods are used for the investigation of PN
properties: analysis and reduction methods like transitive matrices investigation [11].
This paper presents the way to derive and identify PN from events datasets. Such
datasets are for example alarms sequences. From the point of view of states
observations, the paper concerns the way to derive and identify PN from markings
datasets. Such datasets are for example the value of critical parameters that are
usually recorded by supervision systems. The contribution of the paper is also to
present both approaches in a framework.
 Our study is organized as follows. Section 2 concerns ordinary PN. In section 3,
neural network used to model PN is presented, two approaches of the PN design are
developed, the first one from events observations and the second one from states
observations.

529

2 Ordinary Petri Net

An ordinary Petri Net (PN) is defined as <P, T, WPR, WPO > where P={Pi} is a not
empty finite set of n places and T={Tj} is a not empty finite set of p transitions. WPR =
(wPR

ij) ∈ {0, 1}n × p is the pre-incidence matrix and WPO = (wPO
ij) ∈ {0, 1}n × p is the

post-incidence one [12]. The PN incidence matrix W is defined as:
 W = WPO – WPR ∈ {-1, 0, 1}n × p. (1)
 The PN marking M is an application from the set of places P to the set of non
negative integer numbers Z + such that, for each place Pi ∈ P, M (Pi) is the number of

tokens in place Pi. A firing sequence σ = TiTj. …Tk is defined as an ordered series of
transitions that are successively fired from marking M to marking M’ such that
equation (2) is satisfied:

 1 2 ... '
ji kTT T

M M M M→ → → → (2)
 Such a sequence is represented by its characteristic vector F = (fj) ∈ (Z +) p

where fj stands for the number of Tj firings. The marking M’ resulting from the
marking M after firing the sequence F is given by:
 ΔM = M’ - M = W.F (3)

3 Learning algorithm for PN design

In this section, a learning algorithm, inspired from error back propagation, is
investigated to obtain minimal size PN models.
 The basic idea is to consider PN as a multi layered neural network: the hidden
layer is composed of nc neurons that either correspond to n places or p transitions
depending on the learning data set (sequences of events or sequences of markings)
and the ne input and ns output layers both correspond either to the p transitions or to
the n places (ns = ne). The weight matrix Q between input and hidden layers
corresponds either to the connexion from transitions to places (i.e. matrix WPO) or to
the connexion from places to transitions (i.e. WPR

T). The weight matrix between
hidden and output layers V corresponds either to matrix WPR

T or to matrix WPO. This
structure is represented in fig 1.

Input layer

Q V

Output layer Hidden layer

S E

X

1

2

ne

1

nc

1

2

ns

….

….

….

Fig. 1: Neural network structure, Q and V correspond to the incidence matrices.

530

 The learning is computed with the dataset (E, S) obtained from a sequence of nt
successive events or states.
 For each input ek, network output yk = (yik) is compared to the desired output sk =
(sik) and the square error is computed:
 ()2

1 1

 -
ns nt

ik ik
i k

y sε
= =

= ∑∑ (4)

 The aim of the learning phase is to minimize error ε by updating weight matrices
V and Q with (6). Output Y may be worked out with equation (5):
 ()

1
* , *

ne

ik ij jk
j

X Q E x q e
=

= =∑ and ()
1

 * , *
nc

ik ij jk
j

Y V X y v x
=

= =∑ (5)

 ()
1

 - - *
nt

ij ik ik kj
kij

v y s x
v
εη η

=

∂
Δ = = −

∂ ∑ and ()
1 1

 - - * *
ns nt

lk ik ik il kq
i klq

q y s v e
q
εη η

= =

∂
Δ = = −

∂ ∑∑ (6)

 Updating equations (6) depend on the learning rate η. During updating, weight
matrices take their values in a real set. Once error ε converges, binarisation of the
weight matrices is computed thanks to function Br(.) in order to obtain the PN that
has the closest behaviour from neural network (NN) behaviour:
 IR {0, 1}
 x Br(x) = 0 if x < 0.5
 Br(x) = 1 if x ≥ 0.5
 Once the binarisation computed, we test if the obtained PN verifies every
propagation relationships, if it is not the case, another learning phase is started.
 The drawback of the gradient algorithm is to reach local minima. Such minima
can be detected when error increases or reaches a non zero stationary value. In that
case, a partial initialisation of matrix V is proposed (matrix Q remains unchanged) .
As a conclusion, a two-loop algorithm is obtained. The first loop is a real one that
corresponds to the back propagation algorithm (each execution is called “iteration”,
limit_ite is the maximal number of iterations per epoch). The second loop is a discrete
one that gives the PN structure according to an equality test between desired matrix S
and output matrix Y (each execution is called “epoch”, limite_epo is the maximal
number of epochs allowed, every 100 epochs a total random initialisation of matrices
Q and V is done).
 Two approaches are presented, the first one from the event set observations and
the second one from the state set observations.

3.1 From event set

Let's assume that Seq_E is the event time sequence Seq_E ={Seq_E(1) Seq_E(2)…
Seq_E(nt)} with nt observations where Seq_E(i) stands for the rank i event.
 The idea is to compute the event directed paths (EDP), between all events of the
considered DES according to the measured sequence of events, then to train the
network in order to learn the EDP. Let define E = {e1, e2, …, ep} as the set of events in
Seq_E. An EDP exists from ek to ej if and only if the subsequence [ekej] exists in the
sequence Seq_E (the causality relationships result from chronology). EDP are easily
determined, as long as event are directly observed [3][13].
 The input learning set is E. Each event ei is considered as a p vector that satisfies
ei(j) = 1 if i = j else ei(j) = 0. The output learning set S = {s1, s2, …, sp} is also a p

531

vectors set such as each vector si satisfies si(j) = 1 if an EDP exists from ei to ej else
si(j) = 0.
 The network is trained with input/output couples thanks to supervisory learning.
Incidence matrices are obtained from nxpQ∈ and pxnV ∈ with WPO= Br(Q) and
WPR = Br(V T).
 In order to obtain the minimal number of places necessary to represent all EDP,
the previous algorithm is associated with a pruning method that eliminates useless
nodes in the hidden layer. The initial number of nodes (first stage of the pruning
method) can be arbitrary chosen equal to the number of transitions p [14][15]. While
all EDP are learnt the number of nodes is decreased: p p-1, and a new learning
stage is computed. If during the learning stage, the number of epochs reaches the limit
limite_epo, we consider that the number of nodes p becomes insufficient, and we
retain p+1 nodes.

3.2 From state set

Let's assume that Seq_S is the state time sequence Seq_S ={ Seq_S(1) Seq_S(2)….
Seq_S(nt)} with nt observations where Seq_S(i) stands for the rank i state, represented
by a ne vector.
 The idea is to compute the state directed paths (SDP), between all states of the
considered DES according to the measured sequence of states, then to train the
network in order to learn the SDP.

3.2.1 SDP identification and definition of learning data sets

SDP have to be identified from the observed sequence. We have to distinguish several
cases according to Seq_S, because there must be a bijection between input and output
sets to make the network correctly learn all SDP.
 To obtain this bijective relationship, a particular computation of the vectors E(i)
and S(i) has to be made:
Each state in sequence Seq_S is considered as a n vector, Seq_S, E and S are
considered as matrices : +_ ()n x ntSeq S ∈ , 1()n x ntE + −∈ and 1()n x ntS + −∈ . Let
Vect(i) refers to the ith column of matrix Vect.
1 - For every i within [1, nt-1]

 E(i) (Seq_S(i) – Seq_S(i+1)) > 0, the required input marking
 S(i) (Seq_S(i) – Seq_S(i+1))) < 0, the obtained output marking

 End For
2- If more than one output S(j) correspond to the same input vector E(i), (if conflicts
exist) then replace all the different outputs S(j) by the logical OR, between all of
them. Only different vectors are conserved. An example of this computation is given
below. From this algorithm we obtain the input and output learning sets E and S.

3.2.2 Learning and constraints

 The network is trained with input/output couples thanks to supervisory learning.
Incidence matrices are obtained from p x nQ∈ and n x pV ∈ with Br(.) function:
WPR= Br(QT) and WPO = Br(V).

532

 To be sure to obtain a valid PN, (ie a PN with particular incidence matrices),
constraints are applied to the matrices WPR and WPO. To limit the solution space for
these matrices we have only considered PN without synchronisation and parallelism,
and whose marking is bounded: each column of WPR and WPO has to have only one
value 1, in the other case PN will absorb (synchronisation) or produce (parallelism)
more than one token.
 The number of hidden neurons corresponds to the number of transitions, this
number nc is initialised by the number of different states in the observed sequence
minus 1. A pruning algorithm (i.e. a test which consists in eliminating sink or source
transitions and to eliminate all duplicated transitions) is also applied to obtain the
nominal number of transitions.

4 Example

Let us consider the learning of a sequence of several states as an example. Examples
with sequences of events can be founded in [14].
 By running NN algorithm a PN is obtained according to the following
parameters: η = 0.01, error_ threshold = 0.01, limit_epo = 1000 with a total random
initialisation of matrices Q and V every 100 epochs and limit_ite = 200. The initial
number of transitions is set to 9.
 Considering the following state sequence Seq_S which presents more than one
token and different conflicts, vectors E and S have to be computed, in fact only four
relations have to be learnt to obtain the suitable PN.

2 1 0 0 1 2 2 3 2 1
1 2 3 2 1 0 0 0 0 0

_
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 0 1 1

Seq S

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

E

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

0 1 0 1
1 0 0 0
1 1 0 0
1 0 1 0

S

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 Algorithm has converged after 127 epochs and a total of 11147 iterations. Only
7 transitions are retained, the firing sequence is s = T1T1T2T3T3T4T5T6T7. The obtained
incidence matrices and the PN are:

1 0 0 0 0 1 1
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

PRW

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and

0 0 1 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 0 1 0 1 0

PoW

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Fig 2 : PN model from state observations

533

5 Conclusion

An algorithm able to build PN models from observed sequences is presented. Two
approaches of the PN design are developed, the first one from the observation of the
events and the second one from the observation of the states. Such models are helpful
for the diagnosis of DES.
 Different kinds of PN may be built, all of them are ordinary PN with a bounded
marking and a finite atteignability graph, but some of them can present conflicts
(structural conflict) or have more than one mark. Synchronisation problems and real
time applications will concern our further works.

References

[1] Y. Power, and P. A Bahri., A two-step supervisory fault diagnosis framework, WA 6150, 4-06 Juin,
Murdoch, Australia, 2004.

[2] A. Giua and C. Seatzu, Observability of place / transition nets, IEEE – TAC, vol. 47, no. 9, pages.
1424–1437, 2002.

[3] Lefebvre D., Delherm C., Fault detection and isolation of discrete event systems with Petri net
models, IEEE – TASE, Vol. 4, nu. 1, pp. 114–118, January 2007.

[4] T. Bourdeaud'huy and P. Yim, Synthèse de réseaux de Petri à partir d'exigences, Actes de la 5me
conf. francophone de Modélisation et Simulation, pages 413-420, Nantes, France, September 2004.

[5] A. Giua and C. Seatzu, Identification of free-labeled Petri nets via integer programming. In Proc.
44th IEEE Conf. on Decision and Control, Seville, Spain, December 2005.

[6] K. Hiraishi, Construction of a class of safe Petri nets by presenting firing sequences. In Jensen, K.,
editor, Lecture Notes in Computer Science; 13th International Conference on Application and
Theory of Petri Nets 1992, Sheffield, UK, volume 616, pages 244-262. Springer-Verlag, June 1992.

[7] M.E. Meda-Campana and E. Lopez-Mellado, Incremental synthesis of Petri net models for
identification of discrete event systems, In Proc. 41th IEEE Conf. on Decision and Control, pages
805-810, Las Vegas, Nevada USA, December 2002.

[8] M.E. Meda-Campana and E. Lopez-Mellado, Required event sequences for identification of discrete
event systems. In Proc. 42th IEEE Conf. on Decision and Control, pages 3778-3783, Maui, Hawaii,
USA, December.

[9] J. Reid, Constructing petri net models using genetic search, Mathematical and Computer Modelling,
Volume 27, Issue 8, pages 85-103, April 1998

[10] W. Pedrycz and H. Camargo, Fuzzy timed Petri nets, Fuzzy Sets and Systems, Volume 140, Issue 2,
1, pages 301-330, December 2003.

[11] J. Liu, Y. Itoh, I. Miyazawa and T. Sekiguchi, A Research on Petri Net Properties using Transitive
Matrix, Proc. IEEE-SMC, vol. 1, pages 888-893, Tokyo, Japan,1999.

[12] R. David and H. Alla, Petri nets and grafcet – tools for modelling discrete events systems, Prentice
Hall, London, 1992.

[13] Lefebvre D., Sensoring and diagnosis of DES with Petri net models, IFAC Safeprocess 2006, invited
session “Model based fault analysis during a system’s entire life cycle”, pages 1213-1218, Beijing,
China, September 2006.

[14] S. Ould El Mehdi, E. Leclercq and D. Lefebvre, Apprentissage hors ligne et en ligne de modèles par
réseaux de Petri pour le diagnostic des SED, Qualita 2007 – Tanger (Maroc), 20-22 mars 2007.

[15] S. Ould El Mehdi, E. Leclercq and D. Lefebvre, Petri nets design and identification for the diagnosis
of discrete event systems, IAR-ACD Annual Meeting Nancy, workshop on Advanced Control and
Diagnosis, 2006.

534

