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Abstract. Petri net faulty models are useful for reliability analysis and fault 
diagnosis of discrete event systems. Such models are difficult to work out as long 
as they must be computed according to alarm propagation. This paper deals with 
Petri net models synthesis and identification based on neural network approaches, 
with regard to event propagation and to state propagation dataset. A learning 
neural algorithm is proposed to build Petri net models, these models are suitable 
for the diagnosis of discrete event systems. 

1 Introduction 

Fault diagnosis is an important issue for industrial processes, because faults often lead 
to unaccepted waste of productivity [1]. Diagnosis methods involve the analysis of 
collected measures, the estimation of critical parameters, and the comparison with 
reference models. For discrete event systems (DES) modelled by ordinary Petri nets 
(PN), diagnosis may be achieved with two distinct approaches. On the one hand, 
faults are modelled by forbidden states and we suppose that events are observed. It is 
about to estimate the forbidden markings from a partial observation of events [2]. On 
the other hand, faults are represented by events and we suppose that states are 
partially observed [3]. We focus on model synthesis and identification in sight of 
diagnosis [4], [5], [6], [7], [8]. In order to obtain the PN diagnoser, the first goal is to 
build a PN model of a process without a priori knowledge about the structure of the 
PN. This paper deals with the PN structure design from measured data.. The design is 
made by a neural network and the error back propagation learning algorithm. Other 
learning methods to build PN have been investigated such as genetic algorithm [9] or 
fuzzy logic [10]. 
 Our work concerns the design of the PN from observations. These observations 
could be either events time sequences or markings time sequences. From the point of 
view of events observations, several methods are used for the investigation of PN 
properties: analysis and reduction methods like transitive matrices investigation [11]. 
This paper presents the way to derive and identify PN from events datasets. Such 
datasets are for example alarms sequences. From the point of view of states 
observations, the paper concerns the way to derive and identify PN from markings 
datasets. Such datasets are for example the value of critical parameters that are 
usually recorded by supervision systems. The contribution of the paper is also to 
present both approaches in a framework. 
 Our study is organized as follows. Section 2 concerns ordinary PN. In section 3, 
neural network used to model PN is presented, two approaches of the PN design are 
developed, the first one from events observations and the second one from states 
observations. 
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2 Ordinary Petri Net 

An ordinary Petri Net (PN) is defined as <P, T, WPR, WPO > where P={Pi} is a not 
empty finite set of n places and T={Tj} is a not empty finite set of p transitions. WPR = 
(wPR

ij) ∈ {0, 1}n × p is the pre-incidence matrix and WPO = (wPO
ij) ∈ {0, 1}n × p is the 

post-incidence one [12]. The PN incidence matrix W is defined as: 
  W = WPO – WPR ∈ {-1, 0, 1}n × p.  (1) 
 The PN marking M  is an application from the set of places P to the set of non 
negative integer numbers Z + such that, for each place Pi ∈ P, M (Pi) is the number of 

tokens in place Pi. A firing sequence σ = TiTj. …Tk is defined as an ordered series of 
transitions that are successively fired from marking M to marking M’ such that 
equation (2) is satisfied: 

  1 2 ... '
ji kTT T

M M M M→ → → →  (2) 
 Such a sequence is represented by its characteristic vector F = (fj) ∈ (Z +) p 

where fj stands for the number of Tj firings. The marking M’ resulting from the 
marking M after firing the sequence F is given by: 
  ΔM = M’ - M = W.F (3) 

3 Learning algorithm for PN design 

In this section, a learning algorithm, inspired from error back propagation, is 
investigated to obtain minimal size PN models.  
 The basic idea is to consider PN as a multi layered neural network: the hidden 
layer is composed of nc neurons that either correspond to n places or p transitions 
depending on the learning data set (sequences of events or sequences of markings) 
and the ne input and ns output layers both correspond either to the p transitions or to 
the n places (ns = ne). The weight matrix Q between input and hidden layers 
corresponds either to the connexion from transitions to places (i.e. matrix WPO) or to 
the connexion from places to transitions (i.e. WPR

T). The weight matrix between 
hidden and output layers V corresponds either to matrix WPR

T or to matrix WPO. This 
structure is represented in fig 1. 
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Fig. 1: Neural network structure, Q and V correspond to the incidence matrices. 
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 The learning is computed with the dataset (E, S) obtained from a sequence of nt 
successive events or states.  
 For each input ek, network output yk = (yik) is compared to the desired output sk = 
(sik) and the square error is computed: 
  ( )2

1 1

    -  
ns nt

ik ik
i k

y sε
= =

= ∑∑  (4) 

 The aim of the learning phase is to minimize error ε by updating weight matrices 
V and Q with (6). Output Y may be worked out with equation (5): 
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 Updating equations (6) depend on the learning rate η. During updating, weight 
matrices take their values in a real set. Once error ε converges, binarisation of the 
weight matrices is computed thanks to function Br(.) in order to obtain the PN that 
has the closest behaviour from neural network (NN) behaviour: 
  IR  {0, 1} 
  x   Br(x) = 0 if x <  0.5 
               Br(x) = 1 if x ≥  0.5 
 Once the binarisation computed, we test if the obtained PN verifies every 
propagation relationships, if it is not the case, another learning phase is started. 
 The drawback of the gradient algorithm is to reach local minima. Such minima 
can be detected when error increases or reaches a non zero stationary value. In that 
case, a partial initialisation of matrix V is proposed (matrix Q remains unchanged) . 
As a conclusion, a two-loop algorithm is obtained. The first loop is a real one that 
corresponds to the back propagation algorithm (each execution is called “iteration”, 
limit_ite is the maximal number of iterations per epoch). The second loop is a discrete 
one that gives the PN structure according to an equality test between desired matrix S 
and output matrix Y (each execution is called “epoch”, limite_epo is the maximal 
number of epochs allowed, every 100 epochs a total random initialisation of matrices 
Q and V is done). 
 Two approaches are presented, the first one from the event set observations and 
the second one from the state set observations. 

3.1 From event set 

Let's assume that Seq_E is the event time sequence Seq_E ={Seq_E(1) Seq_E(2)… 
Seq_E(nt)} with nt observations where Seq_E(i) stands for the rank i event.  
 The idea is to compute the event directed paths (EDP), between all events of the 
considered DES according to the measured sequence of events, then to train the 
network in order to learn the EDP. Let define E = {e1, e2, …, ep} as the set of events in 
Seq_E. An EDP exists from ek to ej if and only if the subsequence [ekej] exists in the 
sequence Seq_E (the causality relationships result from chronology). EDP are easily 
determined, as long as event are directly observed [3][13]. 
 The input learning set is E. Each event ei is considered as a p vector that satisfies 
ei(j) = 1 if i = j else ei(j) = 0. The output learning set S = {s1, s2, …, sp} is also a p 
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vectors set such as each vector si satisfies si(j) = 1 if an EDP exists from ei to ej else 
si(j) = 0.  
 The network is trained with input/output couples thanks to supervisory learning. 
Incidence matrices are obtained from nxpQ∈ and pxnV ∈ with WPO= Br(Q) and 
WPR = Br(V T). 
 In order to obtain the minimal number of places necessary to represent all EDP, 
the previous algorithm is associated with a pruning method that eliminates useless 
nodes in the hidden layer. The initial number of nodes (first stage of the pruning 
method) can be arbitrary chosen equal to the number of transitions p [14][15]. While 
all EDP are learnt the number of nodes is decreased: p  p-1, and a new learning 
stage is computed. If during the learning stage, the number of epochs reaches the limit 
limite_epo, we consider that the number of nodes p becomes insufficient, and we 
retain p+1 nodes. 

3.2 From state set 

Let's assume that Seq_S is the state time sequence Seq_S ={ Seq_S(1) Seq_S(2)…. 
Seq_S(nt)} with nt observations where Seq_S(i) stands for the rank i state, represented 
by a ne vector. 
 The idea is to compute the state directed paths (SDP), between all states of the 
considered DES according to the measured sequence of states, then to train the 
network in order to learn the SDP.  

3.2.1 SDP identification and definition of learning data sets 

SDP have to be identified from the observed sequence. We have to distinguish several 
cases according to Seq_S, because there must be a bijection between input and output 
sets to make the network correctly learn all SDP. 
 To obtain this bijective relationship, a particular computation of the vectors E(i) 
and S(i) has to be made: 
Each state in sequence Seq_S is considered as a n vector, Seq_S, E and S are 
considered as matrices : +_ ( )n x ntSeq S ∈ , 1( )n x ntE + −∈ and 1( )n x ntS + −∈ . Let 
Vect(i) refers to the ith column of matrix Vect. 
1 - For every i within [1, nt-1] 

 E(i) (Seq_S(i) – Seq_S(i+1)) > 0, the required input marking 
 S(i) (Seq_S(i) – Seq_S(i+1))) < 0, the obtained output marking 

     End For 
2- If more than one output S(j) correspond to the same input vector E(i), (if  conflicts 
exist) then replace all the different outputs S(j) by the logical OR, between all of 
them. Only different vectors are conserved. An example of this computation is given 
below. From this algorithm we obtain the input and output learning sets E and S.  

3.2.2 Learning and constraints 

 The network is trained with input/output couples thanks to supervisory learning. 
Incidence matrices are obtained from p x nQ∈ and n x pV ∈ with Br(.) function: 
WPR= Br(QT) and WPO = Br(V ). 
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 To be sure to obtain a valid PN, (ie a PN with particular incidence matrices), 
constraints are applied to the matrices WPR and WPO. To limit the solution space for 
these matrices we have only considered PN without synchronisation and parallelism, 
and whose marking is bounded: each column of WPR and WPO has to have only one 
value 1, in the other case PN will absorb (synchronisation) or produce (parallelism) 
more than one token. 
 The number of hidden neurons corresponds to the number of transitions, this 
number nc is initialised by the number of different states in the observed sequence 
minus 1. A pruning algorithm (i.e. a test which consists in eliminating sink or source 
transitions and to eliminate all duplicated transitions) is also applied to obtain the 
nominal number of transitions. 

4 Example  

Let us consider the learning of a sequence of several states as an example. Examples 
with sequences of events can be founded in [14]. 
 By running NN algorithm a PN is obtained according to the following 
parameters: η = 0.01, error_ threshold = 0.01, limit_epo = 1000 with a total random 
initialisation of matrices Q and V every 100 epochs and limit_ite = 200. The initial 
number of transitions is set to 9. 
 Considering the following state sequence Seq_S which presents more than one 
token and different conflicts, vectors E and S have to be computed, in fact only four 
relations have to be learnt to obtain the suitable PN. 

2 1 0 0 1 2 2 3 2 1
1 2 3 2 1 0 0 0 0 0

_
0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 0 1 1

Seq S

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

, 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

E

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

0 1 0 1
1 0 0 0
1 1 0 0
1 0 1 0

S

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 Algorithm has converged after 127 epochs and a total of 11147 iterations. Only 
7 transitions are retained, the firing sequence is s = T1T1T2T3T3T4T5T6T7. The obtained 
incidence matrices and the PN are: 
 

1 0 0 0 0 1 1
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

PRW

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

 
0 0 1 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 0 1 0 1 0

PoW

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 

Fig 2 : PN model from state observations 
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5 Conclusion 

An algorithm able to build PN models from observed sequences is presented. Two 
approaches of the PN design are developed, the first one from the observation of the 
events and the second one from the observation of the states. Such models are helpful 
for the diagnosis of DES. 
 Different kinds of PN may be built, all of them are ordinary PN with a bounded 
marking and a finite atteignability graph, but some of them can present conflicts 
(structural conflict) or have more than one mark. Synchronisation problems and real 
time applications will concern our further works. 
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