
Conditional Prediction of Time Series Using
Spiral Recurrent Neural Network

Huaien Gao1,2, Rudolf Sollacher2

1- University of Munich, Germany

2- Siemens AG, Corporate Technology, Germany

Abstract. Frequently, sequences of state transitions are triggered by
specific signals. Learning these triggered sequences with recurrent neu-
ral networks implies storing them as different attractors of the recurrent
hidden layer dynamics. A challenging test and also useful for application
is conditional prediction of sequences giving just the trigger signal as an
input and letting the recurrent neural network evolve the sequences au-
tomatically. This paper addresses this problem with the spiral recurrent
neural network (SpiralRNN) architecture.

1 Introduction

There are many applications where a system evolves differently depending on
one or more external triggering “context” signals. A typical example in discrete
manufacturing is a robot manipulating bottles arriving on a conveyor belt: De-
pending on sensor signals indicating (i) the presence of a bottle, (ii) whether the
bottle is already filled or empty and (iii) which liquid to fill in, the robot starts
different sequences of actions like filling liquid from different sources or ignoring
already filled bottles. A controller which can be trained easily to perform these
sequences depending on the sensor information represents a significant simplifi-
cation for installing and reconfiguring automation systems.

Here, we consider another application, namely a warehouse in figure 1(a) for
many commodities which arrive at the warehouse in random order rather than
regular one. When a trolley is assigned a job to convey a product to its respective
cabin, a suitable sensor provides the associated information φ indicating, for
example, the destination cabin for the product. During the transportation, the
trajectory of trolley and product is recorded and used for on-line training of
a dynamical trajectory model that, given the previous positions on a grid of
suitable spatial resolution, predicts the next position. After sufficient time of
learning, the model should be able to reproduce the trajectories of previously
seen products given the associated φ-values.

In the next section, Spiral recurrent neural network architecture is introduced
for the conditional prediction problem. Section-3 and section-4 will present
the simulations, results and discussion, where performance of different neural
network models will be addressed. Conclusion will be given in the last section.

125

2 Conditional Prediction with SpiralRNN

2.1 Spiral Recurrent Neural Network

Spiral recurrent neural network (SpiralRNN) [3] is a novel neural network archi-
tecture for efficient and stable on-line time series prediction. Forward evolution
of a SpiralRNN model is very similar to conventional recurrent neural networks,
which follows equation (1) and equation (2). Here, x is the data whose dynamics
is to be trained, s refers to the hidden state vector, H and G are the activation
functions in hidden layer and output layer respectively, Win Whid and Wout are
connection-weight matrices in the input, hidden and output layers, and b1 and
b2 are the respective bias vectors in hidden and output layer.

st+1 = H (Whidst + Winxt + b1) (1)
xt+1 = G (Woutst+1 + b2) (2)

SpiralRNN models differ from conventional RNNs in their special structure
of the hidden layer weight matrix Whid, which is a block-diagonal matrix with
μ sub-blocks. Each sub-block matrix Mk is determined by an associated vector
β(k) = {β(k)

1 , β
(k)
2 , . . . , β

(k)
u−1}T as shown in figure 1(b), with k ∈ [1, μ] being the

indices of sub-blocks and u ∈ N indicating the size of Mk. Furthermore the
value of β satisfies the condition: β

(k)
i = tanh(γ(k)

i). With the special structure
as well as the squash function of vector β, the maximum absolute eigenvalue of
k-th sub-block matrix is bounded as shown in equation (3). Because of the block-
diagonal structure, matrix Whid’s maximum absolute eigenvalue λmax satisfies
equation (4).

|λ(k)| ≤
u−1∑

i=1

|β(k)
i | =

u−1∑

i=1

|tanh(γ(k)
i)| < u − 1 (3)

λmax = max
k∈[1,...,µ]

{λ(k)} (4)

With such constraint on the eigenvalue spectrum of hidden-weight matrix,
as well as the fact that matrix Whid is determined by vectors which can be opti-
mized, SpiralRNN model enjoys the advantage of constraint eigenvalue spectrum

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Mk =

0
BBBBBBBBBBBBBBBBB@

0 β
(k)
u−1 β

(k)
u−2 . . . β

(k)
1

β
(k)
1 0 β

(k)
u−1 . . .

.

.

.

β
(k)
2 β

(k)
1 0

. . .
.
.
.

.

.

.

.

.

.
. . .

. . . β
(k)
u−1

β
(k)
u−1 β

(k)
1 0

1
CCCCCCCCCCCCCCCCCA

u×u

F

A

D

C

E

B

Schematic Diagram of warehause(a) Structuer of sub-block Mk(b)

y(×0.1)

Entrance
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

0

10

x(×0.1)

Postern

.

Fig- 1: (a) Schematic diagram of warehouse. Product cabins are denoted by capital letters
and obstacles are in shaded area. (b) Structure of sub-block matrix Mk.

126

like in echo state neural network (ESN) [1] and the advantage of rich complexity
of dynamics modeling ability like in simple recurrent net (SRN) [2], and is hence
suitable for on-line time series prediction. For more details, refer to [3].

2.2 Implementation of SpiralRNN in Conditional Prediction

In the conditional prediction problem of trajectory reproduction, data tuple
xt = [pt, φ] consist of the trajectory data pt (which is two dimensional in this
case) and the corresponding φ-value (which is one dimensional in this case),
where t ∈ [1, lp] is the index for time step and lp is the length of the particular
trajectory pattern. Here, we assume that φ is unique and constant for one
particular trajectory/product; this can be realized by storing the initial trigger
signal (given by sensor) until another signals terminating the trajectory, i.e.
product has been conveyed to the destination. At t = 0, different trajectory
patterns will be separately assigned a virtual starting point p0. The value of p0

is different for each pattern but is randomly initialized the first time a specific
pattern occurs.

Initialization: Every time before training or testing with any trajectory pat-
tern �p, the hidden-state vector of the neural network will be reset to zero
in order to avoid influence from previous data sequence. More important,
the tuple x0 = [p0, φ] at time t = 0 is initialized such that p0 value is
unique but constant for different product/trajectory, as is the φ value. In
such a way, the starting data item of the same product/trajectory, which
is to be used in training and testing, is the constant.

Training: At time step t + 1, for instance, the target tuple is constructed with
the latest data: x̂t+1 = [pt+1;φi]. By setting the previous tuple x̂t as
input, the neural network iterates according to equation (1) and equation
(2). By teacher forcing, xt is replaced by x̂t in equation (1). Different from
batch training, the network parameters are updated each time step upon
comparing the output xt+1 with the new tuple x̂t+1. The on-line training
is based on an extended Kalman filter (EKF)[4] with a real-time recurrent
learning gradient; this combination can be justified theoretically and has
proven successful in earlier tests [3]. Training will be stopped as soon as
the last tuple for the particular trajectory of a product is given; this can
be realised by a sensor signal indicating arrival at the target position.

Testing: In testing, the production type is known, so is the φ-value, and the
task is to reproduce the corresponding trajectory for monitoring and di-
agnosis purposes. Again, the initialization step will be taken before the
starting of the testing. Having the initial tuple x0 in initialization step,
the neural network iterates according to equation (1) and equation (2) as
it does in training step. The output of network in testing will be set as the
input in the next iteration of the autonomous test. Such autonomous iter-
ations continue until the stopping criterion is satisfied, usually the length
of autonomous test lp is predefined.

127

3 Experimental Settings

Data The trajectory data set is extracted from the trajectory coordinates of
different products in the warehouse scenario shown in Figure 1(a). It is
assumed that, in each time step, the trolley moves from one grid point
to the neighbor grid point. Values of φ for trajectory patterns A to F
are respectively set to {1,−1, 0.5,−0.5, 2,−2}. The initial virtual starting
point p0 is randomly initialized within range (−1, 1) for different patterns.
The length of each trajectory (excluding the virtual starting point) is set as
lp = 11. The number of trajectories np in each simulation varies, ranging
from 2 to 6. Choice of data-sequences of trajectories will orderly start from
product A, e.g. trajectories of products A, B and C will be chosen when
np = 3. Data are corrupted by normally distributed noise N (0, 0.012)
with mean 0 and standard deviation 0.01.

Comparison Models The performance of SpiralRNN model will be compared
to that of conventional neural network models including: echo state net-
work (ESN), block diagonal recurrent net (BDRNN)[5] and the classical
multi-layer perceptron (MLP). For sake of fair comparison, number of
trainable parameters (i.e. the complexity of model) in the models will
keep to the same level, as the computational cost of extended Kalman
filter (EKF) training is mainly dependent on this value. As the number
of input/output neurons of models is dependent on the dimension of data
and is therefore fixed, one can change the number of hidden nodes in order
to change the complexity of the particular model.

Model parameters in most cases were initialized according to the normal
distribution N (0, 0.012). For reason of easy deployment, construction
of SpiralRNN model follows [3] and number of hidden units will be the
same as number of input nodes where hidden units have the same size
and structure. Configuration of ESN model follows [1], in such a way that
the hidden weight matrix Whid is initialized randomly over range [−1, 1]
with the sparsity value 95%, afterward the matrix is rescaled such that
the maximum eigenvalue of Whid is equal to 0.8. The BDRNN model will
take the scaled orthogonal version, where the entries of the 2 × 2 sub-
block matrix is determined by two variables w1 and w2 and they satisfy
w2

1 + w2
2 ≤ 1 (for details refer to [5]).

Training and Testing Training was implemented in rounds, where in each
round the network model was trained with all trajectory time series sepa-
rately. Note that entries of the hidden state are re-set to zeros before the
training with any trajectory. After each 10 rounds of such training, the
trained model produces corresponding autonomous output given different
initial inputs. For more details, refer to section-2.2.

Evaluation Evaluation focuses on the output vector components corresponding
to trajectory, namely Γ. The evaluation error ε is then calculated according

128

to equation 5 and equation 6. Note that εi,t,k in equation 6 refers to taking
the mean value of ε over all indices i, t and k, and that when t = lp ε refers
to the error of lp-step-ahead prediction. The final result takes the average
value over 30 simulations.

εi,t,k = (x̂i,t,k − xi,t,k)2, i ∈ Γ, t ∈ [1, lp], k ∈ [1, np] (5)
ε = εi,t,k (6)

4 Results

Performance result from competing models of different size in different tasks
are given in table-1, where models have been trained nt = 20 rounds. Figure 2
illustrates the histogram plot of ε value over 30 simulations with np=4 training
patterns and 200 parameters in model. Table-2 shows the improvement of per-
formance of SpiralRNN model with more training data. The histogram of ε over
30 runs of 200-weights SpiralRNN model is given in figure 3. All numbers in
tables are base-10 logarithm values of the respective ε. In histogram figures, X-
axis represents the value of ε with unit of 10−3 and Y-axis shows the occurrence
frequency of respective ε value.

Model 100 weights 200 weights 300 weights
np=2 np=3 np=4 np=4 np=5 np=6 np=5 np=6

SpiralRNN -3.23 -2.84 -2.44 -3.04 -2.76 -2.53 -2.97 -2.73
ESN -1.15 -0.82 -0.66 -0.77 -0.64 -0.50 -0.70 -0.57

BDRNN -1.52 -2.17 -1.98 -2.25 -2.24 -1.97 -2.27 -2.23
MLP -2.11 -2.01 -1.10 -2.27 -1.73 -1.29 -1.76 -1.51

Table- 1: Evaluation error ε (in logarithmic scale)
of models after nt = 20 training rounds in different
network size in different tasks.

(a) SpiralRNN (b) MLP

Fig- 2: Histograms of ε from 200-
weight models with np=4 and nt=20

training
rounds

100 weights 200 weights 300 weights
np=2 np=3 np=4 np=4 np=5 np=6 np=5 np=6

nt=10 -2.76 -2.46 -1.99 -2.47 -2.23 -2.03 -2.39 -2.02
nt=20 -3.23 -2.84 -2.44 -3.04 -2.76 -2.53 -2.97 -2.73
nt=30 -3.43 -3.00 -2.54 -3.19 -2.99 -2.76 -3.17 -3.04
nt=40 -3.63 -3.04 -2.63 -3.34 -3.11 -2.84 -3.31 -3.21

Table- 2: Evaluation error ε (in logarithmic scale)
of SpiralRNN model in different network size in dif-
ferent tasks.

(a) nt = 10 (b) nt = 40

Fig- 3: Histograms of ε from 200-
weight SpiralRNN with np = 4

The results in these tables clearly show that (i) different trajectories can
be stored by recurrent neural networks simultaneously and (ii) that SpiralRNN
outperforms other approaches in different prediction tasks and with different
size of network. It is worth mentioning that SRN shows similar or even slightly
better results than SpiralRNN but sometimes suffer from instability effects such
that training fails completely (see also [3]). On the other hand, this result
indicates that the constraints on the hidden layer structure of a SpiralRNN
do not severely constrain the modeling power of this architecture compared to
the unconstrained SRN. The worse performance of ESN indicates that their
reduced variability (only the output weights can be trained) imposes too many
constraints. BDRNN and MLP models have achieved better results than ESN,
but suffer from slow convergence. The histogram plot figure 2 illustrates the
improved stability of the SpiralRNN compared with e.g. MLP.

129

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

Auto. Output
Target

(a) trajectory A

0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

Auto. Output
Target

(b) trajectory B

0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

Auto. Output
Target

(c) trajectory C

0.4 0.45 0.5

0

0.2

0.4

0.6

0.8

Auto. Output
Target

(d) trajectory D

Fig- 4: Autonomous outputs on np = 4 trajectory patterns from 200-weight SpiralRNN model
after nt = 20 training rounds.

Typical examples of trajectory prediction by SpiralRNN are given in figure
4. Note that in each sub-plot the output trajectory is the autonomous result
given initial starting value but no further data input.

Increasing the number of trajectories to be predicted will generally require
either longer training time or larger neural network model in order to obtain
the same level of performance. Table-2 reports the performance of a SpiralRNN
architecture of different network size and in different prediction tasks with vary-
ing number of trajectory patterns. Figure 3 which compares the histogram of
error from SpiralRNN model at nt = 10 training rounds and that at nt = 40
has confirmed the convergence of learning. Because of the grid, one prediction
can be consider to be matched if the absolute prediction error is smaller than
0.05, therefore the threshold value is defined as θ = log 10(0.052) � −2.6. It is
shown in table-2 that, after nt = 20 or even nt = 10 training rounds, SpiralRNN
model is able to achieve an evaluation error smaller or close to this threshold in
all mentioned tasks.

5 Conclusion

This paper addresses the conditional prediction of data time series with a Spi-
ralRNN model. We simulate the problem with a warehouse scenario where a
trigger signal depending on product type and thus destination provides a value
of the additional input φ. The task is to reproduce the trajectory of transporta-
tion of the respective product. SpiralRNN model has proven successful in such
conditional prediction tasks compared to other state-of-the-art approaches.

References

[1] Herbert Jaeger. Adaptive nonlinear system identification with echo state networks. Ad-
vances in Neural Information Processing Systems, 15:593–600, 2003.

[2] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[3] Huaien Gao, Rudolf Sollacher, and Hans-Peter Kriegel. Spiral recurrent neural network
for online learning. In 15th European Symposium On Artificial Neural Networks Advances
in Computational Intelligence and Learning, Bruges (Belgium), April 2007.

[4] F.L. Lewis. Optimal Estimation: With an Introduction to Stochastic Control Theory. A
Wiley-Interscience Publication, 1986. ISBN: 0-471-83741-5.

[5] P.A. Mastorocostas and J.B. Theocharis. On stable learning algorithm for block-diagonal
recurrent neural networks, part 1: the RENNCOM algorithm. IEEE International Joint
Conference on Neural Networks, 2:815– 820, 2004.

130

	Introduction
	Conditional Prediction with SpiralRNN
	Spiral Recurrent Neural Network
	Implementation of SpiralRNN in Conditional Prediction

	Experimental Settings
	Results
	Conclusion

