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Abstract. 1H-MRS is a technique that uses response of protons under
certain magnetic conditions to reveal the biochemical structure of human
tissue. An important application is found in brain tumor diagnosis, due to
the known complications of physical exploration and as a help to other kind
of non invasive methods. It is possible to analize spectral data with ma-
chine learning methods to classify tumor classes in an automated fashion.
One important characteristic of these data is their high dimensionality.
In this work we present a contribution to lighten this situation with an
algorithm based on entropic measures of subsets of spectral data. Ex-
perimental results show that the approach used has a good classification
performance, both in terms of prediction accuracy and number of involved
spectral frequencies.

1 Introduction

Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique
that provides information about the biochemical profile (metabolites and lipids)
of brain tissue. Originally used for in vitro chemical analysis of small samples,
it has been used in the diagnosis of adult brain tumors [1]. Previous exist-
ing work shows that it is possible to classify brain tumors using the values of
data points of 1H-MRS using machine learning techniques [2]. Some of these
efforts perform dimensionality reduction with algorithms for feature extraction
or pairwise feature selection techniques [3]. In this work, an Entropic Filtering
Algorithm (EFA) for feature selection is described as a method to generate a
relevant subset of spectral frequencies. This is a feature selection method based
on finding feature subsets evaluated as a whole with respect to their ability to
classify tumors, rather than on ranking individual contribution (that implicitly
denies interaction between features). The EFA is tested on real 1H-MRS data of
6 tumor classes (grouped in three super-classes). Several machine learning algo-
rithms are used to test the reliability of the obtained subsets in the classification
of tumors, within an appropriate experimental framework.
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2 Entropic Filtering Algorithm for Cancer Classification

Mutual Information (MI) measures the mutual dependence of two random varia-
bles. It has been used with success as a criterion for feature selection in machine
learning tasks. In this work we use this concept by deriving a fast algorithm that
computes MI between a set of variables and the class variable by generating first
a “super-feature”, obtained considering the concatenation of each combination
of possible values of its forming features. In symbols, let X = {X1, ..., Xn} be
the original feature set, consider a subset τ ⊆ X and define the operator

⊎
as

concatenation. Then define Vτ as:

Vτ =
⊎

Xi∈τ

Xi (1)

Given τ = {τ1, · · · , τk}, a single feature Vτ is obtained uniquely, whose pos-
sible values are the concatenations of all possible values of the features in τ . The
conditional entropy between Vτ and the class feature Y is then:

H(Y |τ1, · · · , τk) = H(Y |Vτ ) = −
∑

v∈Vτ

∑

y∈Y

p(v, y) log
p(v, y)
p(y)

(2)

Proceeding in this way, the MI can be determined as a simple bivariate case:
I(Vτ ; Y ) = H(Y )−H(Y |Vτ ). An index of relevance of the feature Xi ∈ X to a
class Y with respect to a subset τ ⊂ X, inspired on [4], is given by:

R(Xi; Y |τ) =
I(Xi;Y |Vτ )
H(Y |Vτ )

=
H(Y |Vτ )−H(Y |Xi;Vτ )

H(Y |Vτ )
(3)

This index of relevance of a feature subset is to be maximized (it has a
maximum value of 1). This measure is used next to evaluate subsets of spectral
frequencies, embedded into a fast filter forward-search strategy, conforming the
Entropic Filtering Algorithm (EFA). Let Dp×(n+1) be a discrete data matrix
described by n variables X = {X1, . . . , Xn} (plus the class variable Y , in column
n+1). The matrix D is first sorted using lexicographical order, which accelerates
future computations. Then a new matrix Tp×2 is generated formed by the super-
variable Vτ and the class Y . The pseudo-code of the algorithms is detailed below.

3 Experimental work

The analyzed 1H-MRS dataset corresponds to 266 single voxel long echo time
spectra acquired in vivo from brain tumour patients, out of which 195 are used
in this study, including: meningiomas (55 cases), glioblastomas (78), metastases
(31), astrocytomas Grade II (20), oligoastrocytomas Grade II (6), and oligoden-
drogliomas Grade II (5).
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Algorithm 1: Conditional Multivariated Entropy
Function H (Y, τ ⊂ X)
v− ← ]{d1,j |Xj ∈ τ} ; y− ← d1,n+1

cv ← cy ← 1 ; H ← 0
for i ← 2 to p do

v ← ]{di,j |Xj ∈ τ} ; y ← di,n+1

if v− = v and y− = y then
cv ← cv + 1 ; cy ← cy + 1

else if v− 6= v then
H ← H + cy

p log cy
cv

cv ← cy ← 1
else

t ← #{v | v = Ti,1, i = 1, . . . , p} /* recall T is sorted */
H ← H + cy

p log cy
t

cv ← cv + 1 ; cy ← 1
v− ← v ; y− ← y

returns −(H + cy
p log cy

cv )

Algorithm 2: Index of relevance R

Function R (Xi ∈ X \ τ, Y, τ ⊆ X)
returns H(Y,τ)−H(Y,τ∪{Xi})

H(Y,τ)

Algorithm 3: Entropic Filtering Algorithm
Φ ← ∅ /* Best Spectral Subset BSS */
repeat

x′ ← argmax
x/∈Φ

{R(x, Y, Φ)}
Φ ← Φ ∪ {x′}

until R(Y, Φ) = 1 or Φ = X ;

Class labelling was performed according to the World Health Organization
(WHO) system for diagnosing brain tumours by histopathological analysis of a
biopsy sample. For the analysis in this study, spectra were grouped into three su-
perclasses: high-grade malignant tumours (metastases and glioblastomas), low-
grade gliomas (astrocytomas, oligodendrogliomas and oligoastrocytomas) and
meningiomas. The analyzed spectra consist of 195 frequency intensity values,
from 4.21 ppm down to 0.51 ppm.

3.1 Experimental setup

The main purpose of this research was achieving good generalization results with
a model as simple as possible for better interpretation. To this end, the experi-
mental conditions enforce several aspects: a well-balanced class representation,
a feature selection process independent of the final classifier, and the selection
of a small number of features.
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The 1H-MRS data set was randomly split into two parts: 70% for the feature
selection process itself and a posteriori classifier induction and model selection
by means of 3-fold cross validation (hereafter called the training set) and the
remaining 30% that will be used to ascertain the generalization ability of the
classifiers (the test set). This division was done keeping the relative proportion
of classes in the whole data.

We were first interested in ascertaining whether a feature selection process
could deliver similar results than those obtained using the full set of frequencies.
To this end, we began by designing four different classifiers using the training
set and the full set of frequencies. The classifiers are the nearest-neighbour tech-
nique with Euclidean metric (NN ) with parameter k (number of neighbours),
the Näıve Bayes classifier (NB), a C4.5 decision tree with parameter cp (com-
plexity parameter) and a Random Forest (RF) [5] with parameter nt (number
of trees). In order to apply the EFA, a discretization process is needed. Many
dimensionality reduction studies use discretization schemes as a way to favor
classification tasks (such as [6], [7]). This change of representation does not
often result in a significant loss of accuracy (sometimes significantly improves
it); it also offers large reductions in learning time. In this sense, and keeping in
mind our predictive objective, 1H-MRS data were discretized using the CAIM
algorithm [8]. This method was selected for two reasons. It is designed to work
with supervised data and does not require the user to define a specific number of
intervals for each feature. The EFA is applied to the discretized 1H-MRS data
(the training part) to obtain what will be called Best Spectral Subset (BSS).
Note that the EFA does not need an inducer. Given the obtained BSS, the
four classifiers can then be built in the training set using the original continuous
frequencies and evaluated in the test set. In addition, the filtering algorithm
RELIEF [9] is used as a comparative reference. This is a feature-weighting al-
gorithm that takes feature interactions into account and yields a set of feature
weights that can be sorted in descending order. A cut-point can be established
to obtain a feature subset. The Pareto principle states that, for many events,
80% of the effects (viz. classification ability) comes from 20% of the causes (viz.
frequencies). Loosely following this principle, we first linearly renormalize the
obtained weights so that the smallest weight equals zero and their sum equals
one. Then we select the top m features such that their accumulated weight is
closest to 0.2.

A feature selection process was also developed ex novo in the training set
using Forward Selection in wrapper mode using the same classifiers referenced
above as evaluation function. The goodness of each subset was again evaluated
for each classifier by means of 3-fold cross-validation in the training set. The
BSS was the subset that obtained the maximum evaluation.

3.2 Experimental results and discussion

For every feature selection experiment, the size of the corresponding BSS, the
accuracy (Acc), the macro-averaged F1-measure on the test set and its corres-
ponding parameter found in model selection are reported. The results for the
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Fig. 1: The 7 spectral frequencies obtained by EFA.

four classifiers using the full set of frequencies are displayed in the first row of
Table 1; the results using EFA are displayed in the second row while the results
obtained using RELIEF algorithm are presented in the third row. The results
using Forward Selection in wrapper mode are presented in Table 2 (left).

Reduction BSS NN NB C4.5 RF
method size Acc F1 k Acc F1 Acc F1 cp Acc F1 nt

NR 195 85.0% 81.0% 9 90.5% 88.1% 83.0% 77.2% 0.25 83.0% 75.4% 9
EFA 7 94.3% 93.1% 13 86.8% 85.1% 79.2% 73.2% 0.25 85.0% 82.6% 8
RELIEF 15 71.7% 61.0% 10 60.4% 52.7% 62.2% 54.6% 0.25 71.7% 64.4% 5

Table 1: Classification performance on the test set (NR = no reduction). k =
number of neighbours. cp = complexity parameter. nt = number of trees.

The best result is obtained for the EFA using NN with 7 spectral frequencies:
3.03, 2.54, 2.48, 2.16, 1.57, 1.27 and 1.21, expressed in ppm. The positions in
the spectrum of these frequencies are depicted in Fig. 1, shown against average
spectra per class. Adding to the interpretability of the results, some of the
selected frequencies can be related to known metabolites: 3.03 corresponds to
the Creatine peak, a measure of energy status; 2.16, 2.48 and 2.54 are roughly in
the area of glutamine-glutamate and lipid/macromolecule summed peaks; 1.57
is located nearby the Alanine peak; and, finally, 1.21 and 1.27 are within the
lactate/lipids peak area, which specifically characterizes high-grade malignant
tumours. Performance is similar or much better using this subset than using
the full set of frequencies, thus providing evidence in favor of a feature selection
process. Among the classifiers, NN seems the best alternative in general. In
order to ascertain which super-classes are the most difficult to predict, the full
confusion matrix of EFA using NN is shown in Table 2 (right).

There exists previous work analizing this 1H-MRS data in similar settings.
PCA followed by LDA was used in [10] to distinguish between high-grade malig-
nant tumours and meningiomas, obtaining a mean AUC (area under the ROC
curve) of 0.94, using 6 principal components. The same method was used to
distinguish between high-grade malignant tumors and astrocytomas Grade II
(part of the low-grade gliomas super-class), obtaining a mean AUC of 0.92, also
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wrapper size Acc F1 k/cp

FSS-NN 12 88.7% 87.0% 4
FSS-NB 11 81.1% 78.0% -
FSS-C4.5 7 73.6% 67.0% 0.25

True EFA+13NN
Class LG HG ME

LG 7 1 0
HG 1 29 0
ME 0 1 14

Table 2: Left: Test set results using Forward Selection in wrapper mode. Right:
Test set confusion matrix for EFA+NN.

using 6 principal components. Note that these are both more limited and less
interpretable settings that the one in this paper. Similarly, in [2], LDA with 6
spectral frequencies (3.72, 3.04, 2.31, 2.14, 1.51 and 1.20 ppm: note that some of
them are similar to the ones selected by our algorithm) achieved a 83% of correct
classification on an independent test set, this time using exactly the same three
super-classes that we have analyzed in this study.

4 Conclusions

Several feature selection methods have been applied to a high-dimensional 1H-
MRS data set. An entropic algorithm has shown to be able to provide a drastic
dimensionality reduction of the problem, while improving on the performance
of the full dataset. An added advantage of this method is its simplicity and the
absence of any parameter tuning. Comparative results with similar studies show
that our solution is competitive both in terms of the prediction accuracy and
the parsimony of the selected spectral frequencies, therefore opening a promising
research avenue in the problem of brain tumor classification using MRS data.
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