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Abstract. In regression problems, making accurate predictions is often
the primary goal. Also, relevance of inputs in the prediction of an output
would be valuable information in many cases. A sequential input selection
algorithm for Radial basis function (SISAL-RBF) networks is presented
to analyze importances of the inputs. The ranking of inputs is based
on values, which are evaluated from the partial derivatives of the network.
The proposed method is applied to benchmark data sets. It yields accurate
prediction models, which are parsimonious in terms of the input variables.

1 Introduction

The goal of a regression problem is to learn an input-output relationship from
data. Dependencies between the inputs and the output are typically nonlinear,
and the exact functional form is unknown. Neural networks are widely utilized
in regression problems, since they are relatively fast to train [11] and capable to
approximate a wide class of functions accurately [5]. The disadvantage of neural
networks is, that they include all the input variables and importances of inputs
are unclear. We propose a backward input selection algorithm for RBF networks.
The inputs are dropped one at a time from the model based on the ranking cal-
culated from the partial derivatives. The resulting subsets of inputs are assessed
using leave-one-out (LOO) error. The rejection of unimportant inputs increases
the interpretability of the network, it may improve the generalization capabil-
ity, and it also decreases the computational complexity of the final network [2].
The proposed algorithm can be seen as a wrapper input selection method [3].
Another approaches are filter [13] and embedded methods [12].

2 Radial basis function networks

Let us assume that we have N measurements from an output yj and d inputs
xj = [xj1, . . . , xjd], j = 1, . . . , N . The output of RBF network with a Gaussian
basis functions is

ŷj =
M∑

m=1

αmK(cm, xj) + α0, where K(cm, xj) = exp
(
−‖cm − xj‖2

σ2
m

)
, (1)

and M , cm, and σm are the number, the centers, and the widths of the basis
functions [4], respectively. The model can also be written in the matrix form as
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ŷ = Kα, where the elements of matrix K are defined as Kjm = K(cm, xj) and
the (M + 1)th column is the vector of ones corresponding to the bias term α0.

We place the Gaussian basis function on each training data point xj and set
the widths of the basis functions to an equal value σm = σ. The parameters α
are estimated by minimizing the regularized mean squared error (MSE)

J =
1
N

N∑
j=1

(yj − ŷj)2 + γ

N∑
m=0

α2
m , (2)

where the second term controls smoothness of the nonlinear mapping.
The generalization capability of the model is measured using the LOO er-

ror. For the fixed value of the width σ, the LOO error is the function of the
regularization parameter γ

MSELOO(γ) =
1
N

yT P (diag(P ))−2
Py , (3)

where P = IN −K(KT K+γIm)−1KT and diag(P ) is of the same size and has
the same diagonal as P but is zero off the diagonal [4]. In the optimization of γ,
we use the golden section line search method [1]. The parameters α are found
by minimizing Eq. (2) using the parameters (σ, γ), which minimize Eq. (3).

3 Input variable selection algorithm

We propose a relevance measure to rank importance of each input variable in
the model in Eq. (1). Relevance of the inputs xi, i = 1, . . . , d, can be measured
using the partial derivatives of the output ŷ with respect to xi [10, 9, 8]. The
derivatives of the most relevant inputs vary most through the range of input
values. The partial derivative of the RBF network with respect to xi is

dji =
∂ŷj

∂xji
=

2
σ2

M∑
m=1

αmK(cm, xj)(cmi −xji), i = 1, . . . , d, j = 1, . . . , N . (4)

We use an Add10 data set as an example. It includes inputs xi, i = 1, . . . , 10,
which are sampled independently from an uniform distribution U(0, 1). The
output is y = 10 sin(2x1x2)+20(x3−0.5)2+10x4+5x5+ε, where ε is the Gaussian
noise with zero mean and unit variance. All the variables were scaled to have zero
mean and unit variance before training of a RBF network using N = 250 samples.
On the first column of Fig. 1, the partial derivatives of the RBF network with
respect to the inputs x3 and x4 are shown. The values dj4 are almost constant,
thus the dependency between x4 and ŷ is linear. The dependency between ŷ and
x3 is quadratic, since x3 and dj3 are linearly dependent.

The median of the values dj3 is nearly zero, because of the cancellations
between negative and positive values. Thus, the absolute values |dj3| and |dj4|
might be more representative, which are shown as a function of xj3 and xj4 on
the second column of Fig. 1. The histograms of |dj3| and |dj4| are presented on
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Fig. 1: Scatter plots of partial derivatives dj3 and dj4 (left) and absolute values
|dj3| and |dj4| (middle) as a function of xj3 and xj4, the histograms of the
absolute values |dj3| and |dj4| (right), the solid lines are the medians and between
the dashed lines is the central 67% quantile (right).

the third column. However, the medians of |dj3| and |dj4| are nearly equal and
the relevance of the variables cannot be distinguished based on them. Thus, we
propose to define a relevance measure of the input xi as follows

ri = mdi + Δdi , (5)

where mdi is the median of the absolute values |dji|, j = 1, . . . , N . The second
term Δdi measures the variablity of the values |dji|. It is defined as a difference
Δdi = |dji|high − |dji|low, where |dji|high and |dji|low are the 0.835N th and
0.165N th values in the ordered list of the N absolute values |dji|. With previous
choices, the difference Δdi is twice as large as the standard deviation in the
case of the normal distribution. The larger the variation Δdi the more sensitive
the output is to the corresponding input. The relevant inputs should also have
clearly nonzero medians mdi . Thus, the most relevant input has the highest
value for the relevance measure ri. Both the median mdi and the difference Δdi

are insensitive to the outliers in the data. Here, we use equal weighting for the
two terms in (5), but unequal weighting could be used as well. Other relevance
measures based on the partial derivatives are presented in [10, 14, 6].

We propose a backward input selection algorithm based on the relevance
measure ri. The algorithm starts by evaluating the RBF network with all the
available input variables xi, i = 1, . . . , d. The hyperparameters σ2 and γ are
selected by minimizing the LOO error. After that, the parameters α are obtained
as a solution to a system of linear equations in minimization of Eq. (2). The next
step is to delete the least relevant input xi, which is the input having the smallest
value for the relevance measure ri. The previous steps are repeated using the
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Algorithm 1 SISAL-RBF

1: Let L be the set of the inputs xi, i = 1, . . . , d

2: Minimize the LOO error using the inputs in L
• width of the basis functions σ fixed
• optimize regularization parameter γ by minimizing (3)

3: Repeat step 2. with various values of σ. Select the pair (σL, γL), which
minimize Eq. (3)

4: Use the pair (σL, γL), minimize the function in Eq. (2) with respect to α

5: Evaluate relative importances of the inputs ri, i ∈ L
6: Delete the input xi, which has the smallest value for the relevance measure ri,

from the set of inputs L
7: If L �= ∅ go to step 2, otherwise go to step 8
8: Select the set of inputs Lv, which gives the smallest value for the LOO error

Name Training (Nt) Test (Ntest) inputs range of σ2

Add101 250 9542 10 [1, 500]
Bank1 500 7692 32 [1, 104]
Boston housing1 400 106 13 [1, 500]
Wine2 94 30 256 [5, 106]

Table 1: Properties of the data sets.

remaining inputs, which results to the evaluation of d subsets of inputs. The final
set of inputs minimize the LOO error. The sequential input selection algorithm
for the RBF network (SISAL-RBF) is summarized in detail in Algorithm 1.

4 Experiments

SISAL-RBF was applied to four benchmark data sets (Add10, Bank, Boston
housing, and Wine). In the case of Add10 data, the assessment of input selection
results is straightforward, since the correct inputs are known. The data sets were
randomly divided to the training and test sets. The sample sizes and the number
of inputs are reported in Table 1. LOO errors were evaluated using 50 values
of σ2, which were equally spaced on a logarithmic scale in the ranges shown in
Table 1. All the inputs and the outputs were scaled to have zero mean and unit
variance to make the relevance measures comparable.

A forward selection (FS) algorithm was used as a baseline method to compare
the performance of the proposed input selection strategy, since it is known that
FS is robust against overfitting [7]. In the case of d inputs, (d + 1)d/2 subsets
of inputs have to be evaluated. FS could be stopped before all the inputs are

1Available from: http://www.cs.toronto.edu/∼delve/data/datasets.html
2Available from: http://www.dice.ucl.ac.be/mlg/index.php?page=DataBases
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Data set Ordinary RBF SISAL-RBF RBF with FS
Add10 0.170 | 0.164 | 10 0.069 | 0.060 | 5 0.069 | 0.060 | 5
Bank 0.261 | 0.245 | 32 0.217 | 0.222 | 10 0.211 | 0.229 | 12
Boston housing 0.110 | 0.148 | 13 0.104 | 0.133 | 9 0.093 | 0.127 | 10
Wine 0.004 | 0.014 | 256 0.002 | 0.004 | 39 0.001 | 0.003 | 36

Table 2: LOO error (the 1st value), MSE for the test set (the 2nd value), and
the number of selected inputs (the 3rd value).
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Fig. 2: The input vectors xj in the test set of the Wine data (top), the selected
variables and their relative importances (bottom).

selected, but that point might not minimize the estimate of generalization error.
The prediction accuracies are also reported for the ordinary RBF networks, i.e.
for the networks including all the inputs.

The prediction errors of the models are reported in Table 2. The ordinary
RBF networks have the highest MSEs. In practice, there are no differences
between the errors of SISAL-RBF and FS. Both algorithms found all the five
correct inputs in the case of Add10 data. In the cases of Bank, Boston housing,
and Wine data, the numbers of the same inputs were ten, nine, and thirteen,
respectively. Most of the selected inputs were different in the case of Wine data.
However, they are highly correlated, and thus they contain similar information.
The input vectors xj of Wine data in the test set are shown in the top panel of
Fig. 2. The inputs xi selected by SISAL-RBF and their relative importances are
illustrated in the bottom panel. Only 14% of the available inputs are included
to the final network.

5 Summary and conclusions

The sequential input selection algorithm for RBF networks was presented. The
relevance of input variables were measured using the partial derivatives of the
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network. The final subset of inputs was selected based on the minimum LOO
error. The advantage of the LOO error is that the regularization parameter can
be optimized using a line search method, which does not restrict the evaluation
of error to the predefined values. It was proposed to place the basis function
on each training data point, which is infeasible with large data sets. In such a
case, the locations of basis functions could be selected, for example, using some
unsupervised clustering technique. After that, the centers would be kept fixed
and SISAL-RBF could be applied as it was presented.

Experiments showed that SISAL-RBF was competitive in comparison with
FS in terms of prediction accuracy and selected inputs. Nevertheless, the com-
putational complexity of SISAL-RBF is linear with respect to number of input
variables, whereas the complexity of FS is quadratic. The networks constructed
using SISAL-RBF were also more accurate than the networks using all the inputs,
which indicates that the most important variables were detected by SISAL-RBF.
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