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Abstract. This paper presents a review of methodology for semi-supervised 

modeling with kernel methods, when the manifold assumption is guaranteed to be 

satisfied. It concerns environmental data modeling on natural manifolds, such as 

complex topographies of the mountainous regions, where environmental processes 

are highly influenced by the relief. These relations, possibly regionalized and non-

linear, can be modeled from data with machine learning using the digital elevation 

models in semi-supervised kernel methods. The range of the tools and 

methodological issues discussed in the study includes feature selection and semi-

supervised Support Vector algorithms. The real case study devoted to data-driven 

modeling of meteorological fields illustrates the discussed approach. 

1 Introduction  

The problem of using unlabeled data is of increasing attention in Machine Learning. 

By unlabeled data, we mean those data samples which consist of the input values 

only, while the desired output value is unknown. The methods making use jointly of 

labeled and unlabeled data are called semi-supervised. When predictions have to be 

made to given unlabeled locations only, this particular situation is called transductive 

learning.  Most real-life learning problems are actually semi-supervised, which gives 

rise to the developments of large-scale semi-supervised methods nowadays. 

 The information one obtains from the unlabeled part of the dataset can be of 

different nature. A common approach is to consider the manifold assumption. This 

implies that data actually belong to some lower dimensional manifold in high 

dimensional input space. A large body of literature is devoted to the exploration of 

such an approach; see [1] and references therein. 

 The ratio between the amount of available labeled and unlabeled data will 

always be in favor of the last. The unlimited amounts of unlabelled data may be 

available. Hence, the methodology of semi-supervised data-driven modeling is as 

important as the algorithms themselves, since the described situation influence every 

modeling stage starting from data splitting up to results comparison.  

 In this paper, the highlighted problems are discussed, mainly referring to a real-

life problem of geospatial data modeling. In this field, the semi-supervised learning 

finds elegant applications. Moreover, the manifold assumption often can be 
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considered to be guaranteed and the amount of data to model a manifold is almost 

exhaustive. 

2 Predictive Learning From GeoSpatial Data 

Automatic environmental monitoring networks are becoming one of the main and 

easily accessible sources of information related to environmental and climatic 

research, including natural hazard risk assessment and renewable resources 

estimation. Following the recent advances in wireless sensor networks technologies, 

the spatially distributed information can be gathered at more local scales. Data-driven 

modeling and assimilation becomes one of the most important aspects of 

environmental and climate modeling nowadays [2, 3]. However, the data come noisy, 

contain outliers, missing values and gaps. Given that computational resources 

required to run a physical model in a region of complex topography or urban zone in 

the real time are hard to provide, the data-driven methods become more and more 

important for the processing and modeling of these data. Particularly, the task of topo-

climatic mapping - spatial predictions of climatic and meteorological variables - can 

be efficiently approached in data-driven manner. 

 This paper presents an integrated data-driven methodology of semi-supervised 

data modeling on the manifolds for topo-climatic mapping with modern machine 

learning methods. It is introduced using the real case studies, providing the 

description of the modeling steps, the associated problems, approaches, empirical 

experience and discussions. 

2.1 Monitoring Networks 

Many machine learning modelers ignore the origin of data, assuming them to be i.i.d. 

However, it is essential to keep in mind how the data were sampled, or, in other 

words, how the monitoring network was organized. The purpose of a monitoring 

network is to detect and to understand/model spatio-temporal phenomena (natural or 

artificial) via the observations at a finite number of points in space. 

 Generally, the data coming from environmental monitoring networks are not 

i.i.d. There are numerous reasons for that such as clustered (measurements taken in 

clusters due to natural geomorphological bounds or administrative borders, for 

example) or preferential sampling (the density of measurements in some regions is 

higher). The effective dimension of the clustered network is lower then its spatial 

resolution and can be characterized by dimensional resolution, i.e. their ability to 

detect D-dimensional phenomena in a D-dimensional Euclidean space. Clustered 

monitoring networks cause the biased estimates of statistical moments and model 

hyper-parameters. Even simple mean estimation is not valid if the monitoring network 

is clustered. Clustering also affects the splitting of data into training, testing and 

validation subsets. The strategies to overcome these difficulties can be found in [2]. 

 The particularly important feature of spatial data modeling is that even non 

complex and non clustered monitoring networks often induce low-dimensional 

manifolds in the registered high-dimensional data. 
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2.2 Learning on GeoManifolds 

The environmental processes captured by modern monitoring networks can not be 

generally explained in 2D spatial coordinates. The simplest example is the modeling 

of mean air temperature in mountains. Generally, average temperature linearly 

decreases with altitude thus can be easily modeled in 3D space of coordinates-

elevation. But actually, the domain of this process is the 2D manifold (mountainous 

terrain) embedded into 3D space. 

 With increasing dimensionality of the input space by means of related 

information such as digital elevation models, satellite/aerial remote sensing images, 

Geographical Information Systems, a large amount of dependent inputs is being 

added. This interdependence induce the lower-dimensional manifolds in the original 

input space, similarly to the temperature-elevation example above.  

 Semi-supervised manifold learning becomes particularly useful in approaching 

environmental modeling in data-driven manner. In this application area, the manifold 

assumption is actually guaranteed to be satisfied. 

3 Semi-Supervised Kernel Methods 

A semi-positive definite function K(x,x’) which satisfies Mercer conditions is called a 

kernel. This implies that it corresponds to a dot product in some space (Reproducing 

Kernel Hilbert Space, RKHS), sometimes referred to as a feature space. Generally, 

given a (linear) algorithm, which includes data samples in the form of dot products 

only, one can obtain a (non-linear) kernel version of it by substituting the dot products 

with kernel functions [4]. The general model is a kernel expansion: 

 bxxKxf
N

i

ii += ∑
=1

),(),( αα  (1) 

 The choice of the kernel function is an open issue. Using some typical kernels 

like Gaussian RBF, one takes into account some knowledge like distance-based 

similarity of the samples. 

 The non-parametric data-dependent kernels which reflect the inner geometry of 

the data are of particular interest for the manifold learning. The general idea of 

predictive manifold learning with kernels is to incorporate the geometry induced by 

the manifold. For distance-based kernels, the simplest approach is to use geodesic 

distances induced by the manifolds, which can be computed using Dijkstra algorithm 

[5], given enough unlabelled data. 

 Another way is to enforce the model to be smooth at the manifold by using a 

regularization properties of the kernel [6]. Given the original kernel function K(x,x’), 

not necessarily distance-based, and a set of data samples (both labeled and unlabelled) 

the modified kernel is given by 

   1

'( , ) ( , ) (I+ K)T

x x
K x x K x x k k

−′ ′= − Ω Ω , (2) 

where K is the complete kernel matrix of K(.,.), k is its column and I is identity 

matrix. The choice of matrix Ω implements the smoothness assumption with respect 

to the geometrical structure of the data. It can be achieved by taking Ω=γL, L being 
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the graph Laplacian of the data and γ is a regularization parameter. This kernels were 

implemented for regression estimation in [7]. 

 For N labeled and M unlabelled data samples, and V is the number of vertices in 

the manifold modeling graph, the first method can be implemented in 

O(N+M+Vlog(V)) or O(N+M+V
2
)) computations, while the second one includes 

matrix inversion hence requires at least O((N+M)
2
). Though, the latter computation 

can potentially be speed up since the low number of vertices leads to a sparse 

structure of the graph Laplacian L. 

3.1 Feature Selection 

Large number of input variables brings both information and noise. It is important 

that feature selection in the semi-supervised learning scheme is actually a manifold 

construction: while adding or eliminating the features, the geometry of the input space 

and the manifold is influenced. Currently, there are no exhaustive studies concerning 

this issue. 

 The method which will be used in the case study below is a fully supervised 

recursive feature elimination (originated as pruning in neural networks) developed for 

Support Vector Machine [8]. 

3.2 Model Selection  

In the semi-supervised setting, model selection is a non-trivial task. Both labeled and 

unlabelled data influence the model through a number of corresponding hyper-

parameters. Concerning the labeled data, the usual cross-validation may be applied. 

However, due to the nature of the setting, every unlabelled sample acts as a user-

defined parameter of the algorithm. This issue is not yet explored. 

 In the application below, the unlabelled dataset is fixed and just the hyper-

parameters (the number of neighbors in the manifold-modeling graph and a 

smoothness parameter) are tuned by 10-fold cross-validation. 

4 Case Study: Topo-Climatic Mapping 

The task of topo-climatic mapping - spatial predictions of climatic and meteorological 

variables at local scales - is important for the use in decision support systems and 

natural hazard risk assessment. 

 The data used in this study comes from the Swiss Federal Office for 

meteorology and climatology (www.meteoswiss.ch). Generally, 107 labelled samples 

(the number of weather monitoring stations) and 650000 unlabelled samples (digital 

elevation model) were available for the study. The data are illustrated in Fig. 1. 

 Monitoring network is rather homogeneous, however the sampling is done at 

preferably low elevations and flat terrain. Two problems are considered below: 

temperature inversion mapping (short-time phenomena with highly nonlinear 

relations between relief and temperature) and mean annual wind speed mapping in 

complex mountain relief of Swiss Alps. The conventional tools such as geostatistics 

[2, 3] can not produce a reasonable result in this study since the variogram (spatial 

covariance function) can not be modelled. 
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Fig. 1 Left: X and Y input features (spatial coordinates) of the training dataset 

coming from 107 monitoring stations (labeled data). Right: digital elevation model 

with 650000 samples which is used to create the manifold model for semi-

supervised learning (unlabeled data). 

4.1 Modeling Scheme 

The complex topographies of the mountainous regions highly influence all the 

environmental processes. These relations, possibly regionalized and non-linear, can 

be modeled from data using the Digital Elevation Models. Numerous features such as 

first and second derivative forms (slope, aspect, curvatures, difference of elevation 

smoothed at different scales) were computed from high-resolution DEM. Recursive 

feature elimination was used to select the set of relevant features for a particular 

prediction problem, resulting in 7 features for temperature and 12 for wind modeling. 

Modeling was done with Support Vector Regression using leave-one-out cross-

validation over 107 training samples to tune the parameters. Gaussian RBF kernel 

with geodesic distances on the manifold was used (“Geodesic SVR”). To speed-up the 

computations, the distances were computed on the low-resolution DEM. The low-

resolution DEM was also used to apply the semi-supervised kernel modification 

according to (2). This model is denoted as “Manifold SVR” below.  

 

 

Method 

CV RMSE, 

wind speed, m/s 

CV RMSE, temperature 

inversion, 
o
C 

SVR 

3D SVR 

Geodesic SVR 

Manifold SVR 

3.2 

1.9 

0.82 

0.85 

3.4 

2.2 

1.8 

1.7 

Table 1: Cross-validation RMSE of the compared methods. 

 The cross validation RMSE of the methods are shown in Table 1, and the 

prediction mapping results (the model predictions for temperatures and wind speed in 

space) in Fig. 2.  
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Fig. 2: Mean annual wind speed prediction (left) and temperature inversion 

modeling (right) with the semi-supervised SVR model on geomanifold.  

5 Conclusions 

The paper presented a methodology of data modeling with semi-supervised kernel 

methods in a unique situation when the manifold assumption is guaranteed to be 

satisfied. It concerned the application in the domain of spatial environmental data 

modeling. The low-dimensional manifolds appear in data when integrating the related 

spatially distributed information into the model. 

 The problems related to complex monitoring network structures were discussed. 

It was shown how semi-supervised kernel methods can be applied in this domain, 

starting from feature selection, model selection up to visualization of the results. Real 

case study concerning the topo-climatic mapping was considered. The described 

methodology of data-driven modeling of complex environmental processes with 

machine learning methods enabled to improve the modeling considerably. The 

computational issues concerned with large amount of unlabelled data, resolved here 

by using a representative subset of the latter, still have to be investigated. 
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