
A Novel Autoassociative Memory on the
Complex Hypercubic Lattice

Rama Murthy Garimella and Praveen Dasigi

International Institute of Information Technology (IIIT-H),
Hyderabad - India

Abstract. In this paper we have defined a novel activation function
called the multi-level signum for the real and complex valued associative
memories. The major motivation of such a function is to increase the
number of patterns that can be stored in a memory without increasing the
number of neurons. The state of such a network can be described as one of
the points that lie on a complex bounded lattice. The convergence behavior
of such a network is observed which is supported with the simulation results
performed on a sample dataset of 1000 instances

1 Introduction

The autoassociative memory first pioneered by Hopfield, has proved that a fully
connected network with the neurons implementing the SIGNUM activation func-
tion is capable of recalling a pattern that is stored previously in the network
given a spurious or a noisy pattern [1]. The associated convergence theorem was
proven stating that the network converges to a stable state when it operates in
the serial mode and to a cycle of length ≤ 2 when it operates in the parallel
mode [3]. The neuron in the associative memory computes the following acti-
vation function. If {xi, 1 ≤ i ≤ M} are inputs to a neuron and {wi, 1 ≤ i ≤ M}
are the synaptic weights, then the output of the neuron is given by

y = sign

M∑
j=1

[wjxj − T ],

where,

sign(z) =
{

1, z ≥ 0
−1, z < 0

Here, T is the threshold at a neuron. It is easily seen that there is no loss of
generality in assuming T is equal to zero.

In the context of design of Complex Valued Neural Networks (CVNNs),
Aizenberg, Zurada et al., proposed a novel activation function using the con-
cept of “Phase Quantization” [4, 5] ( of the complex valued net contribution
at a neuron ). The complex-valued neural network is an associative memory
where the inputs to the neurons are complex numbers and the synaptic weights
pertaining to the network are complex as well [7]. As the network operates,
multiplication of general complex-valued weight w mixes the real and imaginary
quantities in a certain manner determined by the value w. In the network, the
multiplication of w is executed for all the parallel input data elements xi. As
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a result, the output maintains a certain vector-direction relation in the com-
plex plane. This is one of the properties that we can utilize effectively to treat
two-dimensional information In an effort to innovate complex valued associative
memory, the authors proposed a novel complex signum function in [6]. The
phase quantization is bounded but has the flexibility of increasing the number
of states in the quantization. To perform the quantization in Argand plane,
the constraint is that we apply bounds on the quantization. This has led the
authors to explore the idea of a bounded spatial quantization scheme to increase
the number of states in the real as well as the complex valued networks.

The paper is organized as follows. Section 2 will give a brief introduction
to the general functioning of the activation functions on the hypercubic lattice,
which is the major contribution of this paper. Section 3 will discuss the conver-
gence issues regarding the neural nets on the hypercubic lattice in the real and
complex domains and putforth some supporting simulation results along with
potential applications. Section 4 will conclude the work

2 Activation Functions

The signum activation function as explained in the first section will change the
state of the neuron to ±1 based on the value of the weighted sum of inputs. In
an associative memory, with individual units being such neurons, the state of
the network can be depicted as a vector X = (x1, x2, ..., xn) where xi = ±1.
Each vector X can be visualized as the vertex of a hypercube of order n. Thus
the network state moves through the vertices of the hypercube till it reaches
a state where the energy of the network is minimum. In this setup, the total
number of states that the network can possibly stay at will be 2n. The classical
Hopfield network [1] that uses this setup is an auto associative memory that
retrieves stored patterns, given spurious or noisy patterns as input. The number
of patterns that can be stored is limited due to the fact that the possible values
that each element of the pattern can take will be ±1. In this paper we have
experimented with the concept of increasing the number of patterns that can
be stored by proposing a multilevel signum function. The multi-level signum
function mlsign(x), on giving an input x, quantizes the weighted sum to one of
L predefined states between [−1, 1]. To do so would be not as straightforward
as the operation of the real valued signum, since the output has to be bounded
both ways and within the range [−1, 1]. Thus, before operating the multi-level
function we need to normalize the weighted sum so that it lies between the
range [−1, 1]. The output of the normalization step will be further fixed to the
nearest state of the L predefined states. The requirement of the normalization
step is to bring the weighted sum to a fixed range consistently. One way to
do this is to divide the output with the difference between the maximum and
minimum of the range of weighted sums at that instant. This would ensure
that the output is between [−1, 1]. However an even consistent way to do this
is to use the hyperbolic tangent function to bring the weighted sum within the
required range. After this step the quantization can be done by fixing the output
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values as suggested. Thus, for the specified number of levels L for an input z,
the function will be,

y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l1, l1 ≤ tanh(z) < l2
l2, l2 ≤ tanh(z) < l3
...
lL−1, lL−1 ≤ tanh(z) < lL

In this specific case however, we have l1 = −1 and lL = 1. For n neurons
the use of this activation function thus increases the number of states in the
network from 2n to Ln. The network will thus lie on a structure called the
hypercubic lattice. The hypercubic lattice is a set of points within the hypercube
X = {x1, x2, ..., xn} where xi can take L uniformly spaced integer values between
[−1, 1]. Thus the network proceeds along the points in the hypercubic lattice till
it finds the stable state with the maximum energy. The setup described above
is the basis for the complex valued multilevel signum activation function. The
complex valued autoassociative memory is defined in a previous work by the
authors and is proved to converge to a stable state in [6]. In the complex valued
autoassociative memory the input is a vector of complex numbers, each of which
is from the set{1 + j, 1 − j,−1 + j,−1 − j} The weights are complex and can be
constituted in a hermitian matrix. The activation function defined at the neuron
is the complex-valued signum as follows,

CSGN(z) = [sign(�(z))] + j[sign(�(z))]

Here, �(z) and �(z) describe the real and imaginary parts of the complex
number z. The output of each of the neuron leads to a vector X , the current
state of the network which lies on what is defined to be the complex hyper-
cube. This formulation can be extended to increase the number of states in the
complex-valued associative memory, leading to what can be termed as a complex
hypercubic lattice.

CMLSIGN(z) = [fix(tanh(�(z)))] + j[fix(tanh(�(z)))]
Here the function fix() rounds the input to the nearest level less than or equal

to the input as described in 1. The complex valued auto associative memory
with complex bi-level signum moves over the vertices of the complex hypercube
till it finds the state with the maximum energy value. At each state it picks the
neighboring vertex that contributes to a higher energy value. In a similar way,
the associative memory that uses the multilevel signum in the real and complex
case moves over the points in the hypercubic lattice in both the real and the
complex cases. The convergence properties such memories will be discussed in
detail in the next section

3 Convergence behavior on the hypercubic lattice

The content addressable memory first designed by Hopfield [1] is based on the
formulation that the activation function leads to an overall energy which follows
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a monotone decrease to a stable least energy state. A generalized proof has been
offered by Bruck et al [3]., where the formulation is that the energy is non- de-
creasing and reaches a global maximum eventually. In every standard case of the
associative memory, the energy monotonically reaches a stable state by “sliding”
over the vertices of the hypercube. It has been proven that similar behavior is
exhibited by a complex valued associative memory on the complex hypercube in
[6]. The associative memory can operate in one of the two modes,i.e., serial or
parallel. In the serial mode the activation function is computed at one neuron at
each step and the energy is updated. In the parallelmode, the activation func-
tion takes into account all the neurons simultaneously and the energy is updated.
The classic autoassociative memory in the real [3] and the complex [6] case
will converge to a single stable state in the serial mode and to a cycle of length
≤ 2 in the fully parallel mode. If we take into consideration the the difference
in energy in the classic autoassociative case in the serial mode, currently at a
neuron k, it can be described by the equation

ΔE = E(t + 1) − E(t) = 2ΔVkHk + Wk,kΔVk
2

where,

Hi(t) =
n∑

Xj=1

Wj,iVj(t) − Ti

In the equation for ΔE, the expression Vk which is the difference in the
input from t + 1 to t, and Hk will be of same sign according to the definition of
the activation function. Hence ΔE is always positive. The same holds true
for the complex valued associative memory as proved in [6], using a novel
proof technique by considering the real and imaginary component separately
and proving them to converge. However when it comes to the case of the multi-
level signum function, this case will not hold.

if Vk(t + 1) = lp, ΔVk.Hk

⎧⎪⎪⎨
⎪⎪⎩

≥ 0, if Vk(t) ∈ [l1, lp] and lp ≥ 0
if Vk(t) ∈ [lp, lL] and lp < 0

< 0, if Vk(t) ∈ (lp, lL] and lp ≥ 0
if Vk(t) ∈ [l1, lp) and lp < 0

Thus in the case of an associative memory on the hypercubic lattice, the
energy function cannot be a monotonic one. This is due to the reason that as
it proceeds along the points of the lattice, at each point it will have to chose
between neighbors that might have a similar energy due to the increase of states.
To observe this from a practical perspective, some simulation results are to be
looked at.

3.1 Simulation results

Some simulations have been performed to test the convergence of energy for the
real and complex valued associative memories on the hypercubic lattice. For the
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Fig. 1: (a) shows the convergence of the energy function to a global maximum in
the complex valued case, (b) shows the convergence of ΔE to zero as the energy
reaches a global maximum

simulations we have generated 1000 random weight matrices for the real and
complex case, at different sizes ranging from 10 to 150 neurons in each network.
It has been observed from the simulations that when operating in the serial
mode, the network always converges to a stable state and for the parallel mode
converges to a cycle of length ≤ 2, which is similar in behavior to the classic
hopfield network. The explanation for this behavior is that when the network
operates in the serial mode, each neuron can take a total of L values, and thus
the value at one of the nodes can affect the energy to have a spurious temporary
divergence from the monotone increase. However it still increases after a certain
state to achieve convergence to a global maximum. This can be observed in the
figures shown below.

As we can see in the figure 1 the energy sometimes seems to enter a spurious
energy state which is less than the previous state, however it leaves the state
again to reach a global maximum. This behavior is repeated for every config-
uration tested. The authors are currently in the process of discovering a proof
technique to prove the global convergence behavior of such associative memo-
ries. It is expected that the proof arguments and techniques that are utilized in
non-linear dynamics [8] will be applicable to the neural network that is being
considered here.

3.2 Applications

The major motivation behind the design of this novel associative memory is to
explore the capability of a network that can store and recall a greater variety
of patterns. This can be made possible since the the number of states for each
neuron increases. To test the capability of the network, one needs to also check
the stability with higher variety of patterns. Increase in the number of states to
a certain extent will increase the capacity of the network, though it may lead to
ambiguous and spurious outputs after a certain increase. In any case, a network
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with increased capability of storage can be employed to yield better results in
image and video restoration and coding. The plausibility of such applications is
the target for future research.

4 Conclusions and Future work

In this paper we have defined a neural network configuration that operates on
a novel multi-dimensional structure called the complex hypercubic lattice. The
convergence behavior of such a network has been studied which is supported
by the simulation results putforth. The motivation is to increase the number
of patterns that can be stored in an auto associative memory in the real and
complex-valued cases. The immediate future work is to analyze the behavior
of the network and bring out a formal proof to the convergence characteristics.
Further the storage and recall capacity of such a network has to be analyzed.
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