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Abstract. Rhythmic synchronization of activated neural groups in the
gamma-frequency range (30-100 Hz) is observed in many brain regions. In-
terneuron networks are key to the generation of these rhythms. Motivated
by the inhibitory effect of interneurons and summarizing experimental find-
ings, it was recently proposed that the corresponding gamma cycle realizes
a rapidly repeating winner-take-all algorithm. Here, this interpretation is
considered from the modeling perspective, starting from an oscillatory net-
work model with several stored patterns. A gradient formulation is used to
include inhibitory pulses. The resulting dynamics is discussed, identifying
temporal coding assemblies with coherent patterns. Thereby, the winner-
take-all hypothesis is combined with binding-by-synchrony and confirmed.

1 Introduction

Rhythmic synchronization of activated neural groups in the gamma-frequency
range (30-100 Hz) was observed in many brain regions. Several observations
established that interneuron networks play an essential role for the generation
of these rhythms; see the review and related references in [1]. It was proposed
recently, in the context of the review in [1], that the gamma cycle may constitute
a rapidly repeating winner-take-all algorithm. In the following, this proposal is
discussed in the context of a recently proposed network model that combines syn-
chronization with a desynchronizing mechanism, denoted as acceleration. The
latter mechanism lets neural units oscillate with higher phase velocity in case of
stronger and/or more coherent input from the other units [2, 3, 4].

In section 2, the model is described and extended with inhibitory couplings,
corresponding to the inhibitory effect of interneurons. In section 3, an example
is given that demonstrates the winner-take-all dynamics in combination with
binding-by-synchrony. The conclusions and an outlook are given in section 4.

2 The Model with Pulse Activity and Inhibition

Consider a network with N units, where each unit k, k = 1, ..., N , is described
in terms of an amplitude Vk = g(uk) = (1+tanh(uk))/2, where g corresponds to
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the activation function of classical networks, and a phase θk that describes the
temporal structure of the unit. In the following, we assume that the network
dynamics is given by a phase-extension of the classical Cohen-Grossberg-Hopfield
model:

τ̃(uk)
duk

dt
= Ik − uk +

1
N

N∑
l=1

wkl(θk, θl)Vl (1a)

τ
dθk

dt
= τωk(u, θ) +

1
N

N∑
l=1

skl(θk, θl)Vl, (1b)

where τ is a time-scale, τ̃(uk) = (1− Vk)τ > 0, and Ik are input parameters. In
the remainder of this section, we construct the wkl, skl, and ωk.

Following the approach that was described in [2], the dynamics of equation
1 is derived from a complex-valued gradient system:

τ
dzk

dt
= − ∂

∂z̄k
L, (2)

where z2
k = Vk exp(iθk), z̄2

k = Vk exp(−iθk). The gradient function is given by

L = P + Wexc + Winh, (3)

where P gives the dynamics of the single units, Wexc describes the excitatory
couplings, and Winh the inhibitory couplings.

In order to connect the model to the picture of the gamma cycle that was
sketched in the introduction, we go beyond the approach discussed in [2, 3, 4]
by describing pulses and specifying the inhibitory part Winh. Let us use

0 ≤ Υa(θ) =
1
2a

(1 + cos(θ))a = cos2a

(
θ

2

)
≤ 1. (4)

to describe the pulsing character of the activity of the units (each unit should
rather be understood as a population of neurons). We refer to a ≥ 0 as peak
parameter and abbreviate Υ1 = Υ. With larger value of a, the inhibitory cou-
pling is more narrowly peaked around θ = 0. This may then be used to model
the inhibitory couplings with

Winh =
γ

2N

N∑
k,l=1

cklΥa(θk)Υa(θl)VkVl, (5)

where γ > 0 and the ckl = clk ≥ 0 describe the strengths of the inhibitory
couplings between units k and l. The inhibitory character of these couplings
results from the signature of Winh, while the usage of equation 4 implies that
the inhibitory coupling between units k and l is present only when the oscillators
are active, where “active” refers to values around Vk � 1 and θk � 0.
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Let us now study the role that Winh may have in conjunction with pattern
recognition, corresponding to the formation of temporal coding assemblies. It
was stated that the mentioned proposal regarding the winner-take-all character
of the gamma cycle “is clearly distinct from the binding by binding-by-synchrony
hypothesis” [1] that was described, for example, in [5, 6, 7]. (See also the com-
ments on this remark at the beginning of section 3.) Correspondingly, we im-
plement the binding-by-synchrony hypothesis with an oscillator model P and
couplings Wexc that complement the couplings Winh in equation 3.

As mentioned in the introduction, we use the recently discussed approach
that is given by the gradient functions P and Wexc that may be found in [2, 3, 4].
Combining these with equation 5 leads to

wkl(u, θ) = hkl

(
α +

σ

2
cos(θl − θk) − τω3

2
sin(θl − θk)

)
(6)

−γcklΥa(θk)Υa(θl) (7)

skl(θk, θl) = σhkl sin(θl − θk) + aγckl sin θkΥa−1(θk)Υa(θl) (8)

and

ωk(u, θ) = ω1,k + ω2,kVk +
ω3

N

N∑
l=1

hkl cos(θl − θk)Vl. (9)

(For the derivation, use equations 2, 3, 5, and [2, sections 2.3 to 2.5].) The hkl

describe Hebbian couplings, realizing the storage of P patterns ξp
k ∈ {0, 1}, p =

1, ..., P . As usual, hkl =
∑

p λpξ
p
kξp

l , where the λp > 0 weight the contribution of
the patterns to the memory. The σ gives the strength of synchronization, while
α describes a classical, that is, phase-independent coupling strength. (In section
3, the examples use α = 0.)

The parameters ω1,k and ω2,k describe eigenfrequencies and shear parame-
ters, respectively. References to and comparisons with other phase models may
be found in [2, 3, 4, 8]. The approach of equation 1 is special in using the third
term on the r.h.s. of equation 9, parameterized with ω3 > 0, thereby establishing
the acceleration mechanism that was described in the introduction.

3 Gamma Cycle and Binding-by-Synchrony

We will now illustrate the dynamics of equation 1 with an example.
In section 2, we mentioned the complementary character of the proposed

gamma cycle mechanism and the binding-by-synchrony hypothesis. The latter
mechanism is “probably based, in part, on experience-dependent refinement of
intra- and inter-areal connections. In contrast, the hypothesis” related to the
gamma cycle mechanism “relies on basic biophysiological dynamics that unfolds
primarily within a local neuronal group” [1].

The example architecture has to take this complementarity into account by
choosing inhibitory and excitatory couplings that are local and non-local, re-
spectively. Such an architecture is easily realized by splitting the N units into
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M modules of U units, N = M × U , where each pattern ξp
k has at most one

on-state unit, ξp
k = 1, for each module (thus, the pattern may have at most

M on-state units), while the inhibitory couplings are non-vanishing, ckl = 1,
only among non-identical units (ckk = 0) that belong to the same module, and
ckl = 0 whenever k and l belong to different modules. As an example, we use
an architecture with M = 32, U = 4.

We choose P = 8 patterns that overlap as follows:

(Opq) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

26 4 6 2 3 6 1 2
. 18 1 2 1 1 1 3
. . 17 0 0 3 1 1
. . . 15 2 1 2 0
. . . . 15 1 3 4
. . . . . 13 1 1
. . . . . . 12 1
. . . . . . . 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

where the symmetric elements are not repeated. For example, pattern p = 3
has N3 = 17 units and is overlapping with pattern p = 1 at six units. The
patterns are ordered so that Np ≥ Np+1. With our examples, these patterns
enter Hebbian weights with equal weight, λp = 1/P for every p.

The parameters are chosen as τ = 1, α = 0, σ = τω3 = πN , a = 1, and
ω1,k = ω2,k = 2π/τ , for every k. The inputs are chosen as Ik = 0. The
discretization is obtain as in [2]. As initial values we use random uk with small
magnitudes and θk that are randomly distributed between 0 and 2π.

In order to describe the collective dynamics of the system, we introduce
pattern activity Ap, coherence Cp, and phase Ψp through [3]:

Ap =
1

Np

N∑
k=1

ξp
kVk, Cp exp(iΨp) =

1
ApNp

N∑
k=1

ξp
kVk exp(iθk), (11)

where Np is the number of units k with ξp
k = 1. Moreover, we may describe the

correponding background quantities Ac
p, Cc

p, and Ψc
p by replacing ξp

k → 1 − ξp
k

in equations 11.
Let us begin to demonstrate the dynamics with vanishing inhibition, γ = 0

(example 1); see figure 1A-C. Then, due to vanishing input, Ik = 0 for every
k, we find that pattern p = 1 dominates due to the highest number of on-state
units and gets segmented trough taking a state of enduring coherence; see figure
1B and C. This is due to the pattern segmenting effect of acceleration (a non-
vanishing input could have made another pattern dominating and caused this to
get segmented with respect to coherence; see [3]). We may define pattern peaks
in analogy to equation 4 describing the collective dynamics; see figure 1A.

Next, we compare the situation with inhibition present, γ = 3N (exam-
ple 2); see figure 1D-F. Comparing the ratio of maximal pulse amplitudes,
A1C1/(Ac

1C
c
1), we find that the dominating pattern is now clearly enhanced

over the background activity; see figure 1D. This confirms the winner-take-all
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Fig. 1: (A-C) Example 1: without inhibition (γ = 0). (D-F) Example 2: with
inhibition (γ > 0). (A) and (D) The solid lines show the pulse amplitudes of the
dominating pattern p = 1, that is, R1Υ(Ψ1) = R1(1 + cos(Ψ1))/2, R1 = A1C1,
for t = 1.5τ to t = 3.5τ . The dotted lines show the corresponding background
values, given by Ac

1, Cc
1, and Ψc

1. (B) and (E) The activities A1 (solid line) and
Ac

1 (dotted), for t = 0τ to t = 4τ . (C) and (F) The coherences C1 (solid line)
and Cc

1 (dotted), for t = 0τ to t = 4τ . See the discussion in section 3.

effect of including the inhibition that constitutes the local interaction that was
attributed to the gamma cycle.

Example 2
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Fig. 2: The solid line gives Υ(Ψ1) = (1 + cos(Ψ1))/2, the dotted line Υ(Ψc
1).

Notice the phase differences and see the remarks in section 4
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4 Conclusions and Outlook

Considering a proposal regarding the functional (local) role of the gamma cy-
cle in combination with the (non-local) binding-by-synchrony hypothesis (see
[1] and references therein), we confirmed the proposed winner-take-all effect in
the context of a recently discussed oscillatory neural network model. This was
done by straightforwardly extending the model described in [2, 3, 4] with locally
inhibitory couplings that where obtained from a gradient system. We demon-
strated with an example that “although the two hypothesis are distinct, they
are fully compatible to each other” [1].

Notice, in this context, another part of the proposal described in [1], related
to the early firing of the winning neurons with respect to the gamma cycle that is
observed in biological experiments. It is interesting to see that also this early fir-
ing is reproduced by the model; see the related phase shifts between the maxima
of the winning pattern and the background in figure 2. Within the framework
of the present discussion, the effect of this early firing could not be judged as
being essential for the winner-take-all behavior. However, such phase shifts may
be understood as being a direct consequence of the accelerating mechanism that
constitutes the discussed model (see, for example, related comments in [4, sec-
tion 6]). Thus, it would be of interest to explore whether the phase shifts that
are observed in the brain are an experimental signal of acceleration.
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