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Abstract. Markov games are a framework which formalises n-agent
reinforcement learning. For instance, Littman proposed the minimax-Q
algorithm to model two-agent zero-sum problems. This paper proposes a
new simple algorithm in this framework, QL2, and compares it to several
standard algorithms (Q-learning, Minimax and minimax-Q). Experiments
show that QL2 converges to optimal mixed policies, as minimax-Q, while
using a surprisingly simple and cheap gradient-based updating rule.

1 Introduction

Reinforcement learning (RL, see e.g. [1, 2, 3] for theory and [4] for applications)
allows modeling and solving problems for which it is impossible to obtain a
learning set: the only available information is a numerical reward received upon
success (partial or not). With algorithms such as Q-learning [5], the agent learns
the actions that lead to the rewards from direct interaction with its environment.

In this paper, we address specifically two-player zero-sum games (Sec. 2) de-
scribed in Littman’s paper [6] which (i) compares three different models (MDP’s,
matrix games [7] and Markov games), (ii) proposes the minimax-Q algorithm,
which exploits the links between RL and game theory and (iii) demonstrates the
respective strengths of Q-learning and minimax-Q on a soccer game.

Littman’s minimax-Q is an efficient, optimal, algorithm, but it has to solve
a linear programming (LP) problem at each step. We propose a new gradient-
based algorithm QL2 (Sec. 3) which also experimentally achieves optimality, but
is much simpler and avoids the computational overhead due to a LP solver. We
compare experimentally minimax-Q and QL2(Sec. 4) with several algorithms
implemented with the Qash library [8] on Littman’s soccer game [6].

The interest of QL2 is its cheap policy update rule: whereas Littman’s algo-
rithm solves a LP problem, ours involves only arithmetical operations.

2 Basic Framework and State of the Art Algorithms

In this paper, we consider an agent Ag interacting with a discrete environment
E in competition with an opponent Opp. Ag performs actions, perceives Opp’s
actions and E ’s state Xt which belongs to its set of states S and aims to learn an
optimal policy with no prior knowledge. Its task is specified by a reward signal
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r and a return R. r indicates the desirability of each state-actions tuple and
can be compared to fear and pleasure in ethology. R quantifies the accumulated
amount of rewards: in this paper, we use the infinite-horizon discounted
return [1, 3] Rt =

∑+∞
i=0 γirt+i where γ ∈ ]0, 1[ is the discount rate.

2.1 Markov Games

In this work, we suppose that the interest of both agents is opposite. In such a
case, the above two-agent environment can be modeled as a two-player zero-
sum Markov game MG [6]. At each time step t, Ag and Opp choose their
actions a and o among the available actions A(s) and O(s) which belong to their
actions sets A and O. MG’s next state depends on the transition probability

Tsi,a,o,sj = Pr(Xt+1 = sj |Xt = si, a, o); (1)

Ag and Opp respectively receive rs(a, o) and −rs(a, o) in s. In this paper, S, A
and O are finite andMG has an unique initial state sinit such that Ts,a,o,sinit = 0.
Ag follows a policy π (see [6, 9]) which can be either pure, if it associates to

each state s the action π(s), or mixed, if it associates to each state s and action
a ∈ A(s) the probability πs(a) to choose a. Opp’s policy is denoted σ.

2.2 A Template for Online Markov Games Algorithms

Game theory [7] tells us that Opp, if rational, has to minimise Ag’s expected
return. Therefore, if we define the value function Vπ such that

Vπ(s) = min
σ

E
π,σ

{
+∞∑
i=0

γirt+i

∣∣∣Xt = s

}
(2)

then the corresponding (not necessarily unique) optimal policy π∗ maximises
Vπ(s), ∀s ∈ S. When T and r are unknown, the learning is performed online
with temporal difference algorithms [1, 2] using the evaluation function Qπ

Qπ(s, a, o) = min
σ

E
π,σ

{
+∞∑
i=0

γirt+i

∣∣∣Xt = s, a, o

}
. (3)

Vπ and Qπ are linked by the Bellman equations for Markov games [6, 1, 10]

Vπ(s) = min
o∈O(s)

SQπ(s, o) (4)

Qπ(s, a, o) = rs(a, o) + γ
∑
s′∈S

Ts,a,o,s′ min
o′∈O(s′)

SQπ(s′, o′) (5)

where SQπ(s, o) =
∑

a∈A(s) πs(a)Qπ(s, a, o). Notice that rs(a, o) is outside the
sum for Qπ: we only need the reward received upon executing the actions for a
stochastic approximation of the Q values.

In this work, we propose a new algorithm and compare it with existing ones.
These algorithms are based on the second Bellman equation Eq. 5: they only
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differ by their hypotheses and methods to compute the optimal policy π∗. They
all use the general template Alg. 1 where the learning consists of epochs: Ag
perceives s, chooses a, observes Opp’s action o, receives a reward r, perceives
the next state s′ and then learns. Notice that only the implementation of the
learning stage is shown in the algorithms.

Input: A RL problem 〈E , r, R〉
Output: V̂ ∗,π̂∗

1. Initialise V or/and miscellaneous data structures
2. s← current state of E
3. repeat
4. Choose and take action a
5. o, r, s′ ← action taken by Opp, gained reward, resulting state of E
6. Learn from the epoch
7. s← s′

8. until some convergence criterion is satisfied
9. return Vπ ,π

Algorithm 1: Online Markov games algorithms template.

The following three standard algorithms are often used in this context. The
one-agent Q-learning [5] embeds the opponent into the environment and learns
to beat it specifically, but is weak against new opponents. Minimax [11] and
minimax-Q [6] exploit the links between RL and game theory to express the RL
problem as a set of matrix games, one for each state s ∈ S. The former’s pure
policy selects the best action in a maximin sense and is therefore sub-optimal
when a mixed policy is required. The latter uses LP and achieves optimality,
but requires calls to a LP solver.

3 QL2: a Constrained Optimisation Approach

We now introduce the contribution of this paper: QL2. This algorithm formu-
lates the RL problem as a constrained optimisation problem, the constraints
being the Bellman equations Eq. 4 and Eq. 5, and optimises

Vπ(sinit) = min
σ

E
π,σ

{
R0

∣∣∣X0 = sinit

}
. (6)

If we introduce the change of variables πθ
s (a) = eθs(a)/

∑
b∈A(s) eθs(b), where

θs(a) ∈ ]−∞, +∞[ such that the bigger θs(a), the bigger πθ
s (a) (and vice versa),

and choose to optimise these values, we obtain the Lagrangian Lπθ associated
to the RL problem which is non-linear in term of the θ values

min
o∈O(sinit)

SQπθ(sinit, o) +
∑
s∈D

∑
a∈A(s)

∑
o∈O(s)

λs,a,oQπθ(s, a, o) +
∑

s∈S\D

∑
a∈A(s)

∑
o∈O(s)

λs,a,o

[
Qπθ(s, a, o)− rs(a, o)− γ

∑
s′∈S

[
Ts,a,o,s′ min

o′∈O(s′)
SQπθ (s′, o′)

]]
. (7)
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where D is the set of absorbing states. Using a gradient-ascent scheme [12], the
QL2 algorithm presented in Alg. 2 optimises Lπθ with a surprisingly simple and
cheap update rule. The αθs(a) values are updated according to the rule

αθs(a) ←
{

αθs(a) ∗ inc if Δθs(a)t ∗Δθs(a)t−1 > 0
αθs(a)/dec if Δθs(a)t ∗Δθs(a)t−1 < 0

(8)

where inc, dec > 1. Note that in practice, we impose |θs(a)| ≤ θmax.

1. Qπ(s, a, o)← (1− α)Qπ(s, a, o) + α

[
r + γ min

o′∈O(s′)
SQπ(s′, o′)

]
2. for all a ∈ A(s) do

3. M(s)←
{

o ∈ O(s)
∣∣∣ SQπθ (s, o) = min

o′∈O(s)
SQπθ (s, o′)

}
4. θs(a)← θs(a)− αθs,a

πθ
s(a)

|M(s)|
∑

o∈M(s)

[SQπθ (s, o)−Qπθ(s, a, o)]

5. Update αθs,a

6. end for
Algorithm 2: Learning part of the QL2 algorithm.

4 Experiments

We will now assess the efficiency of Q-learning, Minimax, minimax-Q and QL2

on SC, a simplified soccer game [6, 10] made up of a 5×4 grid. The reward is
either +1 for win, 0 for a draw and −1 for a loss; 0 otherwise. The moves are
simultaneous and there can be only one player by cell. When starting the game,
the players are placed at random in the first and last columns, and the ball
owner is randomly chosen (see Fig. 1(a)). If both players try to move toward
the same cell, the one which actually moves is chosen at random (and remains
or becomes the ball owner). SC is therefore a stochastic game. In order to avoid
deadlocks, the game has a probability 10−2 to end at each step [6].

Every optimal policy for SC must be mixed. Indeed, in the situation of
Fig. 1(b), if π prescribes to go up or to go down, there is a possibility that Opp
anticipates it and does the same action, barring Ag’s way. On the contrary,
if π prescribes equiprobably these two actions, any prediction by Opp becomes
impossible and Ag will inevitably create an opening.

4.1 Test Protocol

Our test protocol is inspired by [6, 10]. First, an agent using minimax-Q, called
mQ-ref, is trained against a random policy Rnd for 106 epochs to be used as
reference for performance evaluation. Then two instances of each algorithm
(including minimax-Q) learn by playing respectively against (i) Rnd and (ii) an
agent which is simultaneously learning with the same algorithm. This phase also
takes 106 epochs, but every 5×104 epochs, each agent is tested in 1000 one-to-one
contests against mQ-ref to estimate RmQ-ref, i.e. the return that Ag can really
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Figure 1: Example of (a) starting set and (b) mixed policy for a 5×4 soccer game.

expect in sinit against mQ-ref. This experiment was run 10 times to estimate the
mean (the 95% confidence intervals remain small but are not plotted).

The actions are chosen using the ε-greedy scheme [1] with ε = .9 to enhance
exploration and value propagation. QL2’s parameters are dec = 1.1, inc = 1.01
and θmax = 3. The α values follow a geometric progression and decrease by 103

after 106 visits.

4.2 Results on SC with a Random Opponent for the Learning Stage

Fig. 2(a) shows RmQ-ref for Q-learning, Minimax, minimax-Q and QL2 learning
against Rnd. Q-learning is significantly worse than mQ-ref (RmQ-ref ≈ −.2)
because it assumes that any opponent acts as Rnd. Minimax is better (RmQ-ref ≈
−.08): it relies on the rational player hypothesis and is more careful. However, it
lacks a mixed policy: minimax-Q and QL2 both achieve optimality (RmQ-ref ≈ 0)
with similar convergence speed.
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Figure 2: RmQ-ref for Q-learning, Minimax, minimax-Q and QL2 when the learn-
ing stage opponent (a) is Rnd or (b) uses the same algorithm.

4.3 Results on SC with a Learning Opponent for the Learning Stage

Fig. 2(b) shows RmQ-ref for Q-learning, Minimax, minimax-Q and QL2 learning
against an agent which is simultaneously learning with the same algorithm. Q-
learning is still sub-optimal but has improved (RmQ-ref ≈ −.1) thanks to its
learning stage opponent which in fact determines its strength. On the contrary,
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Minimax, minimax-Q and QL2’s convergence has only slightly accelerated (this
appears more obviously on graphs of wins percentages not shown here): they
obtain policies of identical strength whatever the opponent since they consider
the rational player hypothesis. In particular, Minimax remain sub-optimal.

5 Conclusion

We have shown that Q-learning produces sub-optimal opponent-dependent poli-
cies; it however improves greatly when it learns against a learning opponent ([6]
made the same observation). As for two-Agent algorithms, we have shown that
pure policies (e.g. Minimax) may be sub-optimal as predicted by game theory.
minimax-Q and QL2 both achieve optimality at comparable speed, but QL2’s
updating rule is much more simple.
QL2 can be improved: it is not yet robust enough and can fail to converge

if θmax is too large or too small, due to machine precision limits and entropy
constraints on the policy. The impact of θmax remains to be better understood
and the gradient-ascent scheme itself should be improved. Moreover, it would
be interesting to investigate the suitability of our approach for n-players Markov
games where cooperation is conceivable [13] or n > 2 [14].
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