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Abstract. In this work, we developed classifiers to distinguish between
four ovarian tumor types using Bayesian least squares support vector ma-
chines (LS-SVMs) and kernel logistic regression. Input selection using
rank-one updates for LS-SVMs performed better than automatic relevance
determination. Evaluation on an independent test set showed good per-
formance of the classifiers to distinguish between all groups, even though
borderline and metastatic tumors were expected to be hard to identify.

1 Introduction

Optimal treatment of ovarian tumors depends on the type of tumor. Adequate
treatment decisions have beneficial consequences for the patient, such as im-
proved prognosis. Therefore, an accurate preoperative diagnosis of ovarian tu-
mors is needed. Hitherto, models aimed to distinguish between benign and
malignant tumors [1, 2]. However, there are different types of malignant tu-
mors. In this paper, we developed classifiers to distinguish between benign and
three types of malignant tumors (primary invasive, borderline, and metastatic)
using Bayesian least squares support vector machines and kernel logistic regres-
sion. The models output probabilities, which is important because diagnostic
uncertainty influences treatment decisions. With respect to input selection, we
used a rank-one update method and compared its performance with automatic
relevance determination.

This paper is organized as follows. Section 2 describes the used algorithms.
Section 3 describes the data set and presents the results. The last section con-
cludes the paper.

2 Classification and input selection algorithms

We used three algorithms for multi-class classification. Using pairwise cou-
pling, we combined 1-versus-1 Bayesian least squares support vector machines
(LSSVM-PC) or 1-versus-1 kernel logistic regression models (KLR-PC). Multi-
class kernel logistic regression (MKLR) was used as an all-at-once algorithm.
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Data samples consist of an input vector x,, (n =1, ..., N), and an outcome
indicating to which class the sample belongs. The output of all algorithms
consists of the 4 posterior class probabilities given x.

2.1 Least squares support vector machines

Least squares support vector machine (LS-SVM) classifiers [3] are obtained by
solving a linear set of equations, whereas standard SVMs represent quadratic
programming problem. The LS-SVMs classifier in the primal space, y(x) =
sign[w’'¢(x) + b], is obtained by solving

N
;nlljr}a (;WTW + ;vnzl ei), such that vy, WT(p(Xn) + b} =1-e,,
where y,, is the binary class indicator (encoded as —1 vs +1), w the param-
eter vector, b the bias term, e, the error variable, and ~ the regularization
hyperparameter. The mapping ¢ : R? — R" maps the input space into a high-
dimensional feature space.

By taking the L%rangian, the classifier can be reformulated in the dual space
as y(z) = sign[znzl anyn K (x,%,) + b], where aq,...,ay are the support
values. The positive definite kernel function K(x,z) = ¢(x)T¢(z) allows us to
work in the feature space without explicitly constructing it. Popular kernels are
the linear kernel to build classifiers with a linear decision boundary in the input
space, and the nonlinear radial basis function (RBF) kernel. The RBF kernel
has parameter o to denote the kernel width. For standard LS-SVMs, typically
no support values are zero, such that the sparseness property of SVMs is lost.
Due to the 2-norm in the LS-SVM cost function, «a,, equals ~ye,, resulting in
negative support values for easy training samples. In this work, we were able to
impose sparseness by repeatedly deleting samples with a negative support value.

To obtain class probabilities, we formulated the LS-SVM model in a Bayesian
framework [4]. An advantage is that both v and the kernel parameters (if any)
are tuned automatically.

2.2 Kernel logistic regression

Kernel logistic regression (KLR) is a method that is closely related to SVMs.
However, KLR directly results in probabilistic output, and can be readily ex-
tended to multi-class KLR (MKLR). Recently, an LS-SVM framework for solving
MKLR was derived [5]. This method starts from a regularized version of MLR
that is solved by optimizing the penalized negative log likelihood function using
iteratively regularized re-weighted least squares. By mapping the input space
into a high-dimensional feature space using a positive definite kernel, and by
applying a model with the structure of an LS-SVM in each iteration, a kernel
version of MLR is obtained using an iteratively re-weighted LS-SVM method.
We tuned hyperparameters using five-fold cross-validation (5CV).
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2.3 Pairwise coupling

Pairwise coupling (PC) combines 1-versus-1 probabilities into multi-class prob-
abilities. In the method adopted in this paper [6], one solves

K o in K
k 1 .
Tk = Z K_lpkla Vkv with Zﬂ-k:la 7Tk20»
I1=1,k71l k=1
where 7y, ..., g are the multi-class probabilities to be estimated, and pg; is

the probability obtained by applying the k-versus-I binary classifier.

2.4 Input selection
2.4.1 Automatic relevance determination (ARD)

For Bayesian LS-SVMs, ARD is implemented by inserting a diagonal weight
matrix in the kernel function [7]. The weights are optimized in the Bayesian
model. The initial choice for is taken to be [1, ..., 1]/o, with o being the
optimal RBF kernel parameter for the unweighted Bayesian model. Inputs with
low weights can be dropped from further analysis.

2.4.2  Rank-one updates for LS-SVMs (R1U)

Selecting inputs by repeatedly adding the input that gives the best gain in
performance based on leave-one-out cross-validation (LOO-CV) is, in its original
form, computationally intensive. When using LS-SVMs, this strategy can be
speeded up for two reasons. First, the LS-SVM model structure allows for the
fast computation of model performance measures based on LOO-CV [8]. Second,
the LS-SVM model can be updated using rank-one adjustments in the kernel
matrix such that adding an input does not require the re-computation of the
model [9]. This method is very fast for performing greedy input selection (i.e.
forward or backward), but is only available for linear kernel LS-SVMs.

3 Results

3.1 Data

We used the data set from Phase I of the International Ovarian Tumor Anal-
ysis (IOTA) group, containing data from 1066 women collected at nine centers
across Europe. There were 75% benign, 16% primary invasive, 5% borderline,
and 4% metastatic tumors. The training set consisted of 754 women (71%),
the test set of the remaining 312. This split was stratified for tumor type and
center. Data collected involved demographic information, cancer history, pain
during examination, and a large amount of morphologic and blood flow mea-
surements describing the tumor. Submission of complete data was obligatory
for all measurements.
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3.2 Step one: comparison of input selection methods

Using the training data, we applied three input selection methods to all six 1-
versus-1 classification problems: ARD with linear kernel (ARD-lin), ARD with
RBF kernel (ARD-RBF), and R1U. Both ARD methods were applied to 36
initial inputs, and the 16 with lowest weight were deleted. In the second and
third ARD run, the worst 8 and 4 inputs were dropped, respectively. The final
run ranked the remaining 8 inputs. Because dropping inputs may influence the
input ranking, this approach was preferred over a single ARD run. For R1U, the
LOO-AUC (LOO area under the ROC curve) was used in each step to determine
which input to add. The value of v was re-tuned in each step by selecting the
value with optimal LOO-AUC performance.

The results of the three methods were compared as follows. Per binary
problem, we considered 12 Bayesian LS-SVM models. We considered a Bayesian
LS-SVM with linear kernel using inputs from either ARD-lin, ARD-RBF, or
R1U, and a Bayesian LS-SVM with RBF kernel using inputs from ARD-RBF.
For each of these, we used the 3, 5, and 8 best inputs as determined by the input
selection method, thus resulting in 12 models overall. The performance of these
models was determined using 20 runs of 5CV on the training set, yielding 100
validation AUCs per model that were summarized by their mean. We combined,
by averaging, the results for all binary problems into one summarizing plot
(Figure la). The R1U method gave the best results.

3.3 Step two: determine final input sets for each binary problem

We need good input sets for all binary problems while keeping the overall number
of inputs small. Therefore, we selected 16 promising inputs based on the R1U
ranking, and ran R1U again to rank these 16. Then, 20 runs of 5CV were used
to determine how many of the most important units were to be chosen. This
extensive analysis resulted in final input sets for each binary problem (Table 1).
Three to five inputs were selected per binary problem, 11 in total.

1-versus-1 problem | Inputs
Ben vs Inv ascites, max. diam. of solid component (maxsol),
irregular internal cyst wall (irreg), age, acoustic shadows (5 inputs)
Ben vs Bor age, history of ovarian cancer (historyOC), max. diam. of lesion,
number of papillary projections, blood flow in pap. projections (5)
Ben vs Met ascites, maxsol, irreg, entirely solid tumor (solid) (4)
Inv vs Bor ascites, maxsol, irreg, age, bilateral tumors (5)
Inv vs Met ascites, solid, historyOC (3)
Bor vs Met ascites, maxsol, solid (3)

Ben = Benign, Inv = Primary invasive, Bor = Borderline, Met = Metastatic

Table 1: Selected inputs for each 1-versus-1 problem.
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3.4 Step three: Model training and evaluation

As mentioned earlier, we focus on three algorithms to construct classifiers:
LSSVM-PC, KLR-PC, and MKLR. The linear kernel was used for these models.
The comparison of the different input selection methods suggested that purely
linear approaches may perform best (Figure 1a). The MKLR model is an ’all-
at-once’ method (as opposed to a combination of 1-versus-1 models). Therefore,
we used all 11 inputs from Table 1 for the MKLR classifier. Both other models,
on the contrary, used these inputs only where they were deemed necessary (cf.
Table 1).

Table 2 presents the test set performance of the classifiers by showing the
test set AUC and the estimated probability that a classifier is the best of the
three (Pp). This probability is obtained by drawing 1000 bootstrap data sets
from the test set, and computing the proportion of data sets for which the
classifier had the best AUC. All classifiers had good performance. Benign and
primary invasive tumors were identified most accurately, but also metastatic
and borderline tumors were identified very well. KLR-PC performs well for
identifying borderline tumors, MKLR, for metastatic tumors. The ROC curves
for the KLR-PC classifier are shown in Figure 1b.

Primary
Model Benign invasive Borderline Metastatic
LSSVM-PC | 0.934 —0.16 0.938 —0.55 0.838 —0.08  0.906 — 0.23
KLR-PC 0.934 —0.25 0.936 —0.17 0.850 —0.87 0.896 — 0.01
MKLR 0.936 — 0.59 0.933 -0.28 0.826 —0.05 0.915 —0.76

Table 2: Test set performance (AUC and P).
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4 Discussion and conclusions

In the present work, classifiers were constructed that were able to accurately dis-
tinguish between four ovarian tumor types. Most notably, the good performance
of the models for borderline and metastatic tumors is promising. These groups
are small, and were expected to be difficult to separate from other groups. The
classifiers were based on rank-one update input selection, a fast method to per-
form forward or backward input selection for LS-SVM classifiers using LOO-CV.
An interesting aspect of the method is that it can easily use AUC information
to select inputs. This is important if one wishes to construct classifiers with
optimal discriminatory power. At least for our application, this method per-
formed better than automatic relevance determination. A drawback is that the
rank-one update method is only suited for linear kernels.

A few important analyses are not reported due to lack of space, or are still
due. First, it is essential to investigate whether the predicted probabilities are
calibrated. Second, comparing the algorithms rather than the classifiers us-
ing repeated training-test splits is useful too, even though clinicians have more
interest in classifiers. Third, since we aim to distribute good classifiers to clini-
cians for use in gynaecological practice, it is necessary to evaluate the classifiers
prospectively in the same and in other centers.
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