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Abstract. We propose a modification of the dynamic neural field model
of Amari [1], aiming at reducing the simulation effort by employing space-
and frequency representations of the dynamic state in parallel. Addition-
ally, we show how the correct treatment of boundary conditions (wrap-
around, zero-padding) can be ensured, which is of particular importance
for, e.g., vision processing. We present theoretical predictions as well as
measurements of the performance differences between original and mod-
ified dynamics. In addition, we show analytically that key properties of
the original model are retained by the modified version. This allows us
to deduce simple conditions for the applicability and the computational
advantage of the proposed model in any given application scenario.

1 Introduction

Dynamic neural fields [2, 1, 3] are a standard tool applied in cognitive mod-
eling [2, 4, 5], biomimetic vision [6, 7] and ”intelligent” real-world systems [8].
However, the computational effort required for this technique was always a factor
preventing its wide-spread use. This contribution presents a method for reduc-
ing the computational effort considerably if certain conditions can be met. The
equation for neural field dynamics as proposed by Amari [1] (referred to simply
as Amari dynamics - AD) reads

τ ȧ(�x, t) = −a(�x, t) + i(�x, t) + F (�x) ∗ f [a(�x, t)] + h (1)

where a
(

�x,t
)

is the state of the neural field, i (�x,t) is a function representing the
input to the neural field, f (.) is a bounded monotonic, usually nonlinear func-
tion with values between 0.0 and 1.0 called “transfer function”, F (�x) stands for
a function called the “interaction kernel”, τ specifies the time scale, and h is a
constant specifying the global excitation or inhibition of the field. The operator
“*” indicates a spatial convolution. In order to solve the equation numerically,
the variables �x,t are discretized using step sizes Δ�x, Δt. By doing this, the
convolution is transformed into a discrete operation. Usually, the function F (�x)
is concentrated in a small region around the origin and can thus be expressed
as a discretized, finite convolution filter. Discrete convolutions are computation-
ally costly in the space representation (SR), but it is known [9] that discrete
convolutions can be computed efficiently in the Fourier representation (FR).

As a consequence, it would be desirable to perform all computations of one
AD iteration in the FR. In order for this to work, all other quantities appearing
on the right-hand side of eqn. (1) must be transformed to or maintained in
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the FR. The problems with this approach in the context of simulating AD are
twofold: first of all, a convolution in the FR implicitly enforces cyclic boundary
conditions. Secondly, the application of the transfer function is, except for linear
functions, unfeasible in the FR. The issue of boundary conditions is important
in many real-world applications such as, e.g., image processing [7, 6]. In the
following section, we will propose a modification to AD which allows to reduce
the computational cost strongly by exploiting the advantages of the FR while
correctly applying arbitrary transfer functions and boundary conditions.

2 Methods

We propose to perform the numerical solution of eqn. (1) entirely in the FR
which is feasible since almost all simulation steps are convolutions, scalar multi-
plications or sums. An exception is the application of the transfer function and
possibly boundary conditions. The key idea is to apply these to a size-reduced
SR of the neural field instead to the field itself.1 For this purpose, eqn. (1) must
be adapted; the proposed modified Amari dynamics (MAD) now reads as follows,
where S (�x) is a smoothing operator designed to remove high spatial frequencies
from the field:

τ ȧ(�x, t) = −a(�x, t) + i(�x, t) + F (�x) ∗ f [S(�x) ∗ a(�x, t)] + h. (2)

The smoothing operation makes it possible to downsample the neural field to
a smaller size in the FR without introducing artefacts. Since the field is rep-
resented in the FR, smoothing is simply effected by cutting out a central part
of the neural field. From the reduced-size neural field in the FR, a reduced-size
field in the SR can be obtained by inverse Fourier transform which can be per-
formed very efficiently due to the size reduction. After applying the transfer
function to the field, the result is transformed back into a size-reduced FR, and
the convolution with the interaction kernel can be performed. In order for this
to work, the parameters in the interaction kernel

f(�x) = GσE
(�x) − GσI

(�x), Gσ(�x) =
1

2πσ
e−{ �x2

2σ2 }, σE < σI . (3)

must be chosen such that the kernel is band-limited (see also section 3.3).
In the case of zero-padding boundary conditions, the convolution results need

to be adapted, as shall be explained later in this section. Subsequently, the neural
field can be upsampled to the original size. The upsampling procedure in the FR
is a simple copying operation and thus very efficient. The upsampled result can
now be used to perform the whole iteration step entirely in the FR. The updated
state of the neural map remains in the FR to be used in the next iteration step.
An iteration is schematically shown in Fig. 1 (left).

Zero-padding boundary conditions are frequently used when performing dis-
crete convolutions: they imply that, whenever a convolution filter element is

1Otherwise, the proposed method would not be more efficient than the alternative: to solve
in the SR and only to transform to the FR for computing the convolution term.
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Fig. 1: Flowcharts of the MAD simulation algorithm. Left: One complete it-
eration, distinguishing between periodic (case A) and zero-padding (case B)
boundary conditions. Solid/dashed boxes show the neural field either in the FR
or the SR and indicate downsampled or original neural field size. The embedding
of the neural field into a larger area (case B) is symbolized by dashed boxes.
Right: details about case B. The two masks applied to the convolution results
are obtained by filtering a zero-padded unity field, a(�x, t) ≡ 1, with the first
and the second term in the interaction kernel of eqn.(3), and then inverting the
results. The application of these masks counteracts the edge sensitivity of the
kernel at the zero-padded boundaries.

applied outside the neural field dimensions, zero values are used instead of “miss-
ing” field entries (see, e.g., [9]). In order to apply these boundary conditions,
certain operations must be performed at initialization of the field as well as at
each iteration. First of all, the initial state of the neural field must be enlarged
in each spatial dimension, initializing undefined regions to zero values (”zero-
padding”). The enlargement can be done at initialization and must be, at each
border, more than half of the size of the convolution filter. Secondly, every K
iterations, the (new) input to the neural field must be equally enlarged. Thirdly,
at each iteration, the neural field must be convolved in a way that corrects the
creation of an artificial edge at the boundaries between neural field and zero-
filled regions. It must be ensured that the convolution filter does not ”see” this
edge: we require that the convolution with a zero-padded identity field, f(�x)∗ I,
results in a homogeneous value everywhere within the area of the field. This
is achieved by convolving (i.e., multiplying) the size-reduced field in the FR by
both summands in eqn. (3) separately; the results are transformed back into
the SR, where each is point-wise multiplied by a separate pre-computed mask.
The results are re-transformed to the size-reduced FR and subtracted from each
other, giving the final convolution result. For details, please see Fig. 1 (right).

Please note that the application of boundary conditions in the described way
does not prevent MAD simulations to be more efficient than SR-based ones.

3 Theoretical analysis

In order to assess the advantage gained by iterating eqn. (2), it is necessary to
make an estimate of the complexity of the algorithm and compare it to an es-
timate derived for the simulation of dynamics following eqn. (1). Furthermore,
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a proof is required for the claim that the qualitative behavior of eqn. (2) repro-
duces that of eqn. (1). In all calculations in this section, zero-padding boundary
conditions are assumed since they are the ”worst case” in terms of efficiency.

3.1 Complexity analysis

We first introduce some notation: assume a discretized neural field of quadratic
layout having M2 discretized elements (”neurons”). Let furthermore K desig-
nate the number of time steps during which the afferent input is constant (it is
commonly assumed that the field is on a faster time scale than its input), and
let η <= 1 stand for the factor that the size of each neural field dimension is
reduced by (see also Fig. 1). The size-reduced field therefore has η2M2 elements.
Adding up the contributions from all steps shown in Fig. 1 for MAD (see sec-
tion 2), using zero-padding boundary conditions (case B in Fig. 1, left) and a
linear rectified transfer function, we arrive at a complexity per iteration of

CMAD(M,K, η) = O(M2η2{ 2
Kη2

log2(M
2) + 5 log2(η

2M2) + 6 + η−2}) (4)

if a fast Fourier transform can be used which has a complexity of M2 log2 M2[10].
When trying to do the same thing for eqn. (1), we obtain CAD,FFT(M) =
O(M2{3 log2(M2) + 5}), assuming that the calculation of the convolution term
in eqn. (1) is done in the FR; calculation in the SR is disregarded since it de-
pends unfavorably on the convolution filter size. The advantage of MAD, as can
be seen from Fig. 2 (left), is already quite pronounced for η = 0.5 and grows as
the application allows to use even smaller values of η than assumed in Fig. 2.
This is supported by experimental results as can be seen in Fig. 2 (right).
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Fig. 2: Theoretical and experimental performance measures. Left: Plot of the
complexity measures CMAD (η = 0.5) and CAD,FFT defined in the text against
the neural field size M. The values on the complexity axis are irrelevant since
only their relative magnitude matters. Right: Experimental performance (on a
2,4 GHz Pentium Processor running Linux), given in frames per second (fps).
For producing both figures, a value of K = 10 was used (see text).
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3.2 Mathematical analysis

In this section, we will prove that a key property of AD also holds for the pro-
posed MAD model: the existence of stable, static ”disk” solutions characterized
by a(�x, t) > 0 for �x ∈ D and a(�x, t) < 0 otherwise, where D is a circularly sym-
metric region of radius R. Following the analyses given in [3, 11], we choose the
Heaviside function θ(x) as transfer function. For the static case with no afferent
input to the field, the differential equation for MAD reduces to

a(�x, t) = F (�x) ∗ f [S(�x) ∗ a(�x, t)] + h (5)

which is identical to the expression obtained in [3] except for the smoothing
operation on the right-hand side. A way to reduce this expression to the one
obtained in [3] is to look for field configurations where the smoothing has no
effect, or: S(�x) ∗ a(�x, t) ≡ a(�x, t). In that case, the proof from [3] applies which
states the stability of disk solutions depending on their radius and the global
inhibition term h. Obviously, smoothing has no effect if the field contains only
low spatial frequencies unaffected by S. This can be trivially fulfilled, and thus
we have found a sufficient condition for the existence of symmetric disk solutions.

3.3 Choice of η

MAD can be iterated in a very efficient manner if small values of η (see sec-
tion 3.1) can be justified. To determine this, let us recall that this parameter
governs the smoothing of the neural field before computing the lateral interaction
term in eqn. (2). Depending on η, only low spatial frequencies will contribute to
the lateral interactions meaning that smaller localized activations cannot pro-
duce any lateral interaction themselves (although they ”feel” it). As shown
previously, stable disk solutions of a certain radius may arise, and this radius is
roughly of the order of the Gaussian variances in the interaction kernel, see [11].
A simple heuristic to determine feasible values of η is therefore to choose η such
that no stable disk solutions are eliminated by smoothing. Thus, η can be de-
termined from the variance parameters in eqn. (3). Another way to see this is to
consider that a downsampled version of the convolution kernel F (�x) is used in
order to perform the convolution during a MAD iteration, see section 2. Clearly,
an η must be chosen which ensures that F (�x) can be downsampled without being
corrupted, which gives us a lower bound for η.

4 Experimental tests

We conducted experiments using the same setting and parametrization as used
in the complexity analysis of section 3.1, but instead of the complexity measures
CAD,FFT and CMAD we calculated the number of iterations per second that could
be achieved by using the different simulation approaches on standard computer
hardware. All simulation algorithms make use of strongly optimized block op-
erations using the Intel IPP library. The results are shown in Fig. 2 (right).
Keeping in mind that K = 10 iterations are computed for each frame, real-time
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capability of MAD simulation is evident even though the more complex (see
Fig. 1) zero-padding boundary conditions were used. Although we did not test
this fully, we always observed stable localized activations even when the field
initially contained high frequencies, violating the condition for stable solutions
derived in section 3.2.

5 Discussion

Summarizing, we have proposed a modified version of the neural field equation
proposed by Amari, and shown experimentally as well as theoretically that it
can be solved numerically (simulated) more efficiently than previous approaches
if certain conditions are met. We have presented a simple way to estimate
whether this is the case, and what kind of speed-up may be expected in a given
scenario. We believe that in many application scenarios such as bio-inspired
image processing [7, 6], cognitive modeling[5, 2, 4] or scene interpretation[8],
the necessary requirements are met to gain strong performance gains in the way
presented here. It is our hope that this may contribute to a greater acceptance
of neural fields in general, and to the researchers’ capability to simulate much
larger cognitive systems and models than has been possible up to now.

References

[1] Shun-ichi Amari. Mathematical foundations of neurocomputing. Proceedings of the IEEE,
78(9):1441–1463, 1990.
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