
Approximation of Gaussian Process Regression Models
after Training

Thorsten Suttorp and Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
{thorsten.suttorp, christian.igel}@neuroinformatik.rub.de

Abstract. The evaluation of a standard Gaussian process regression model takes
time linear in the number of training data points. In this paper, the models are
approximated in the feature space after training. It is empirically shown that the
time required for evaluation can be drastically reduced without considerable loss in
performance.

1 Introduction

The training time of a standard Gaussian process model is polynomial and its execution
time (i.e., the time required to evaluate the model for a given input after training) is
linear in the number of training samples. This scaling behavior limits the applicability
of standard Gaussian processes for large scale machine learning problems. In this paper,
we assume that training is done offline and training time is not (yet) a problem, but
execution time is crucial. This is a rather special situation, but a scenario we are indeed
facing in practice, for example in the domain of real-time driver assistance systems or
biometric applications.

Most papers on generating sparse Gaussian process models directly address com-
plexity reduction during training. In most instances this is realized by incorporating
approximations in the (Bayesian) derivation of Gaussian processes, e.g., [1, 2, 3]. A
good overview of approximation methods for Gaussian processes is given in [4]. Here
we consider a two-stage process. The idea is to first generate an as good as possible
solution by our favorite (large-scale) training algorithm and to reduce the complexity
of the result by a general, robust approximation algorithm [5, 6]. While in general
more time consuming, this process may have the potential to generate better solutions
than combining learning and approximation in one step because the learning algorithm
can make the best possible use of the available information before the solution is care-
fully approximated. Anyway, this conceptual clear separation between training and
approximation has the practical advantage that complexity reduction can be performed
independent of the way the initial model has been obtained (e.g., using freely available
software: shark-project.sourceforge.net).

2 Gaussian Process Regression

In the following, we derive Gaussian regression models from the viewpoint of regular-
ization networks. Our goal is to learn a real-valued function f : X → � based on
sample data S = {(x1, t1), . . . , x�, t�)} ∈ (X ×�)�, where X denotes the input space.
We consider linear regression in some feature space F endowed with a dot product

f(x) = 〈φ(x), w〉 .

427

The feature map φ : X → F maps input elements to a reproducing kernel Hilbert space
F such that 〈φ(x), φ(z)〉 = k(x, z) for a positive definite kernel function k : X ×X →
�. The vector w ∈ F is chosen such that the regularized empirical risk

R(w,S, λ) =
�∑

i=1

(ti − f(xi))2 + λ‖f‖2F

is minimized. This is achieved by expressing w as w =
∑�

i=1 αiφ(xi) and computing
α = (K + λI)−1

t, where t = (t1, . . . , t�)T, K ∈ ��×� is the kernel matrix with
[K]ij = k(xi, xj), and α ∈ ��.

These regression models are called regularization networks [7, 8] and can also be
derived in a Bayesian framework as special Gaussian processes. A Gaussian process
is a collection of random variables, any finite number of which have a joint Gaussian
distribution. Here, these random variables are the outputs f(xi) given the inputs xi. We
assume that the observations of the outputs are subject to i.i.d. Gaussian noise with zero
mean and variance λ

(
i.e., ti = f(xi) + εi and εi ∼ N (0, λ)

)
. If we set the covariance

matrix of the Gaussian process to the kernel matrix and the mean to zero, then f(x) is
the maximum a posteriori estimate of an observation given an input x. For a detailed
introduction to Gaussian processes we refer to recent textbooks [9, 10].

3 Resilient Approximation of Gaussian Process Models

For many practical applications the calculation of f(x) =
∑�

i=1 αik(xi, x) obtained
by Gaussian process regression is computationally too expensive. This expression is
well known from classification with support vector machines, and a number of authors
address its approximation [11, 12, 6]. Almost all work in this area is based on an
idea presented in [11], where it is suggested to approximate f =

∑�
i=1 αik(xi, ·) by a

function f ′ =
∑L

i=1 βik(zi, ·) with zi ∈ X , βi ∈ �, and L � � such that the distance
function ρ2 := ‖f − f ′‖2F is minimized.

The reduced set {z1, . . . , zL} of approximating vectors (AVs) can be constructed
by iteratively adding single vectors to a given solution. The following algorithm imple-
ments this idea. The different steps are discussed below.

Algorithm: Approximation of Gaussian Process Models

initialize f1 := f1

for i = 1, . . . , L do2

determine zi by minimizing ρ2(zi) = ‖fi − βiφ(zi)‖2F3

calculate optimal β1, . . . , βi4

fi+1 ← f −∑i
j=1 βjφ(zj)5

adjust z1, . . . , zL and β1, . . . , βL by global gradient descent6

determine optimal offset b′7

In [5] the authors note that for the case that the approximation consists of a single
term (i.e., f ′ = βφ(z)) it is not necessary to directly minimize ρ2, but it is instead possi-
ble to minimize the distance between f and its orthogonal projection onto span(φ(z)),

428

which is given by
∥∥∥ 〈f,φ(z)〉
〈φ(z),φ(z)〉φ(z)− f

∥∥∥
2

F
= ‖f‖2F − 〈f,φ(z)〉2

〈φ(z),φ(z)〉 . We obtain the dis-
tance measure

E(z) := − 〈f, φ(z)〉2
〈φ(z), φ(z)〉 = − f2(z)

k(z, z)
,

which can be minimized using gradient methods. Therefore, the derivatives of E(z)
with respect to all components of a single vector z are needed:

∂z
f2(z)
k(z, z)

=
1

k2(z, z)
·
(
∂zf

2(z) · k(z, z)− f2(z) · ∂zk(z, z)
)

.

The parameter L is usually chosen as large as possible given the time constraints of
the application. In general, the accuracies on the training or (even better) on an external
test set achieved by the original and approximated model can guide the choice of L.

Choosing Initial Vectors. For applying the iterative technique described above start-
ing points for the optimization of E(z) have to be selected. We suggest to use α-
proportional selection, which has its origin in stochastic universal sampling known
from evolutionary algorithms [13]. A weighted roulette wheel containing all inputs xi

is simulated. The slots are sized according to the corresponding |αi|, and L equally
spaced markers are placed along the outside of the wheel. The wheel is spun once, and
the slots that are hit by the markers define the L initial vectors. This heuristic is based
on the idea that vectors that received a big |αi| during Gaussian process regression are
more important than those with small ones.

Determining the Optimal Coefficients. In each iteration of the approximation algo-
rithm the coefficients β = (β1, . . . , βL) have to be determined anew. The optimal
coefficients for approximating f =

∑�
i=1 αik(xi, ·) by f ′ =

∑L
i=1 βik(zi, ·) for

linear independent φ(z1), . . . , φ(zL) can be computed as β = (Kz)−1Kzxα, where
Kz

ij := k(zi, zj) and Kzx
ij := k(zi, xj), see [12].

Global Gradient Descent. For further minimizing the distance function ρ2 gradient
descent can be applied to all parameters of the sparse solution f ′ [5]. The derivatives
of ρ2 with respect to all components of an AV are given by

∂zi
ρ2 = −2

�∑
j=1

αjβi∂zi
Kzx

ij + 2
L∑

j=1

βjβi∂zi
Kzz

ij

and the derivatives with respect to the coefficients βi by

∂βi
ρ2 = −2

�∑
j=1

αjK
zx
ij + 2

L∑
j=1

βjK
zz
ij .

429

Computing the Optimal Offset. In our experiments we found that the approximation f ′

could be improved when an additional offset was incorporated. Therefore, we consider
the differences of f and f ′: b′(x) =

∑�
i=1 αik(xi, x)−∑L

i=1 βik(zi, x) for all training
inputs and compute their mean

b′ =
1
�

�∑
i=1

b′(xi) .

The resulting regression function that is used throughout this study is given by f̃(x) =
f ′(x) + b′.

Resilient Minimization of the Distance Function. Approximating the regression func-
tion of a Gaussian process is basically the same as approximating the decision function
of a support vector machine. In [6] we employed the efficient Rprop (resilient back-
propagation) algorithm [14, 15] for the resilient approximation of SVMs. Because we
found this algorithm to provide reliably good results, we propose to apply it also to the
problem of Gaussian process approximation.

The Rprop algorithm is an efficient and robust first order gradient method that con-
siders only the signs of the partial derivatives of the error function E to be optimized
and not their amount. The iRprop+ algorithm used in this study implements weight
backtracking. It partially retracts “unfavorable” previous steps. Whether a parameter
change was “unfavorable” is decided based on the evolution of the partial derivatives
and the overall error [15]. The standard parameters give reliably good results, and the
initial step sizes used in the algorithm can be chosen small, so that no parameter-tuning
is required when applying resilient backpropagation.

4 Experiments

Setup. We applied the proposed algorithm to the Abalone data set, where the ages
of abalone are predicted from easily obtainable physical measurements. Second, we
considered the Boston data set. Here, housing values in suburbs of Boston are predicted.
Both data sets are available from the UCI machine learning repository [16] and are
frequently used real word data sets for regression.

We adopted the experimental setup from [17]. For each data set we performed the
following preprocessing: We transformed each continuous feature to zero mean and
unit variance. The gender encoding (male/female/infant) of the abalone was mapped to
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The Boston (Abalone) data set was randomly partitioned
into 100 (10) splits with 481 (3000) examples for training and 25 (1177) examples for
testing. In the experiments we used Gaussian kernels k(x, z) = exp(−γ‖x − z‖2),
and for every partition we trained a Gaussian process with well performing hyperpa-
rameters (γ = 10−1.5, λ = 10−1.5 and γ = 10−1.2, λ = 10−2 for Abalone and Boston
respectively). The resulting Gaussian process models were approximated for different
predefined numbers of AVs using resilient approximation (with and without final gradi-
ent descent) as described in Section 3, and in each case the mean squared error (MSE)
on the test data was observed.

430

0 50 100 150 200 250 300 350
3.8

4

4.2

4.4

4.6

4.8

5

5.2

M
SE

#AV

with gradient descent
w/o gradient descent
NPD

0 50 100 150 200
0

5

10

15

20

25

30

M
SE

#AV

with gradient descent
w/o gradient descent
NPD

Fig. 1: Results for the approximation of Gaussian process regression models. Averages
of the mean squared errors with the standard deviations are depicted. Top plot: results
for Abalone. Bottom plot: results for Boston.

Results. The results of the approximation trials are depicted in Fig. 1. In each case,
the number of AVs is plotted against the MSE on the test data. In addition to the mean
the standard deviation is depicted. The light gray horizontal lines give the MSE and the
corresponding standard deviation of our original Gaussian process model.

Resilient approximation (with and without final gradient descent) led to regression
functions that achieved the performance of the original Gaussian process at a fraction
of its computational costs.

The performance of our approximation algorithm was compared to the results pre-
sented in [17], which are obtained by applying nonlinear pseudodiscriminants (NPDs).
Because of the different quality of the approaches and probably different kernel widths,
resilient approximation and NPD are not directly comparable. Nevertheless, the results
provide an indication of the quality of our approach. The experiments gave a clear
ranking of the algorithms and showed that resilient approximation with final gradient
descent performed best.

431

5 Conclusions

The approximation of Gaussian process models can be used to obtain a regression func-
tion for real-world applications requiring fast decisions. For both real world data sets
that were considered in this study the performance of the approximation achieved the
performance of the original Gaussian process model at a fraction of its computational
costs. The final gradient descent improved the quality of the approximations. Adding
an offset parameter in the sparse model improved the performance.

References

[1] A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In T. K. Leen, T. G.
Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13,
pages 619–625. MIT Press, 2001.

[2] M. Seeger, C. K. I. Williams, and N. Lawrence. Fast forward selection to speed up sparse Gaussian pro-
cess regression. In C. M. Bishop and B. J. Frey, editors, Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2003.

[3] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18.
MIT Press, 2006.

[4] J. Quiñonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Approximation methods for Gaussian
process regression. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel
Machines, pages 203–223. MIT Press, 2007.

[5] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. J. Smola. Input space
versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):1000–
1017, 1999.

[6] T. Suttorp and C. Igel. Resilient simplification of kernel classifiers. In J. Marques de Sá et al., editors,
Proceedings of the 17th International Conference on Artificial Neural Networks (ICANN 2007), volume
4668 of LNCS, pages 139–148. Springer-Verlag, 2007.

[7] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances
in Computational Mathematics, 13(1):1–50, 2000.

[8] T. Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the American
Mathematical Society (AMS), 50(5):537–544, 2003.

[9] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

[10] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Springer-Verlag,
2006.

[11] C. J. C. Burges. Simplified support vector decision rules. In Proceedings of the 13th International
Conference on Machine Learning (ICML 1996), pages 71–77, 1996.

[12] B. Schölkopf, P. Knirsch, A. J. Smola, and C. J. C. Burges. Fast approximation of support vector kernel
expansions, and an interpretation of clustering as approximation in feature space. In P. Levi, R.-J.
Ahlers, F. May, and M. Schanz, editors, DAGM-Symposium, pages 124–132. Springer-Verlag, 1998.

[13] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In J. J. Grefenstette, editor,
Proceedings of the Second International Conference on Genetic Algorithms, pages 14–21, 1987.

[14] M. Riedmiller. Advanced supervised learning in multi-layer perceptrons – From backpropagation to
adaptive learning algorithms. Computer Standards and Interfaces, 16(5):265–278, 1994.

[15] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning algorithm. Neurocomput-
ing, 50(C):105–123, 2003.

[16] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[17] E. Andelić, M. Schafföner, M. Katz, S. E. Krüger, and A. Wendemuth. Kernel least-squares models
using updates of the pseudoinverse. Neural Computation, 18:2928–2935, 2006.

432

