
Pruning and Regularisation in Reservoir
Computing: a First Insight

Xavier Dutoit1, Benjamin Schrauwen2, Jan Van Campenhout2,
Dirk Stroobandt2, Hendrik Van Brussel1, Marnix Nuttin1 ∗

1- Katholieke Universiteit Leuven - Mobile Learning Robots Research Group
Celestijnenlaan 300b, 3000 Leuven - Belgium

2- Universiteit Gent - Dept of Electronics and Information Systems
Sint Pietersnieuwstraat 41, 9000 Gent - Belgium

Abstract. Reservoir Computing is a new paradigm for using Recurrent
Neural Networks which shows promising results. However, as the recurrent
part is created randomly, it typically needs to be large enough to be able
to capture the dynamic features of the data considered. Moreover, this
random creation is still lacking a strong methodology. We propose to
study how pruning some connections from the reservoir to the readout
can help on the one hand to increase the generalisation ability, in much
the same way as regularisation techniques do, and on the other hand to
improve the implementability of reservoirs in hardware. Furthermore we
study the actual sub-reservoir which is kept after pruning which leads to
important insights in what we have to expect from a good reservoir.

1 Introduction

Reservoir Computing (RC) is a relatively new technique for using Recurrent
Neural Networks (RNNs), which has been introduced independently in [1, 2, 3].

This technique has been shown to achieve performance comparable to the
state-of-the-art on various tasks with a much simpler training algorithm than
classical RNNs. The basic idea is to use a large RNN as a reservoir of functions
and to train a linear readout layer to extract the relevant information from the
reservoir. The recurrent part itself is randomly created and left untrained.

This has raised the question on how to create good reservoirs for a given
task. Several solutions have been proposed: general guidelines [4], gradient-
descent algorithms [5], reservoir adaptation [6], and, in a previous work from
the authors, reservoir pruning [7]. The latter idea, that we extend here, is to
improve the reservoir by pruning out the least useful neurons. Actually, in order
to disturb the dynamics of the reservoir less, only the readout connections, i.e.
the least useful connections from the neurons to the readout, are pruned.

We will show that this readout pruning improves the generalisation ability
of the reservoir. Moreover, as the main bottleneck of most hardware implemen-
tations of reservoir [8, 9] is the number of connections from the reservoir to the
readout, it also decreases the hardware requirements.

In the last part of this work we will study what the properties of the resulting
optimally pruned sub-reservoirs (i.e. the part of the reservoir still connected

∗This work was funded by the FWO Flanders project G.0317.05.

1

to the readout) are. This enables us to have a better understanding of what
important properties of reservoirs are and how we can build better reservoirs.

2 Approach

We consider here only the ESN model [2], although the same pruning method
can be applied to LSM. The reservoir state s[t] and output o[t] are described by

s[t] = f
(
Wr

r · s[t − 1] + Wr
o · o[t − 1]

)
(1)

and o[t] = Wo
r · s[t], (2)

where f is a non-linear function (here an hyperbolic tangent) and Wr
r, Wr

o and
Wo

r are the reservoir, feedback and readout matrices, resp.
The main advantage of the ESN approach (and of Reservoir Computing in

general) is that only the readout matrix Wo
r needs to be trained (the other

matrices are created randomly beforehand). In order to generate the states
used for training, the network is first run in a teacher-forced mode, by feeding
back the desired output to the reservoir. The states are collected in a matrix S
and the desired output in Ô. The readout matrix is then found, originally, by
solving Wo

r · S = Ô in the least square sense. However, in order to improve the
generalisation of the solution, we can apply a ridge regression technique [10] and
instead solve

Wo
r = arg min

Wo
r

(‖Wo
r · S − Ô‖2 + λ · ‖Wo

r‖2
)
. (3)

Once the readout matrix has been defined, the network can run in free-run
mode, feeding back the actual output instead of the desired one. The optimal
regularisation parameter λ is found by grid-search, by optimising a validation
error computed on the first 3000 time steps of the free-run mode.

From equations (1) and (2), the state can be described recursively by

s[t] = f

((
Wr

r + Wr
o · Wo

r

)
· s[t − 1]

)
� f

(
Wloop · s[t − 1]

)
(4)

The hyperbolic tangent non-linearity inside the reservoir ensures that the
state will always be bounded. However, as the feedback matrix Wr

o has very low
values (by construction, see later), the states used to train the readout matrix are
very small, and the elements of the readout matrix Wo

r are thus large in order
to project them back to the desired output signal. This means that, despite
the output can not explode to unbounded values, it can drive the reservoir to
saturation and reach a very high value. It is then stable around this large value.

There are actually 3 possible cases in the long run: (1) the system ”explodes”
and the reservoir is driven to saturation, (2) the activity fades out towards zero
or (3) the output keeps the desired magnitude (at least for the length of the
experiment - 16’000 time steps in free-run in this case).

2

2.1 Error measure and pruning

We evaluate the reservoir as follows: first, the reservoir runs in teacher-forced
mode for 4’000 time steps. The first 1’000 time steps are discarded to get rid of
the transients states and the readout matrix is trained on the remaining 3’000
steps. The reservoir runs then for 16’000 time steps in free-run mode. The mean
square error (MSE) between the desired output and the actual output on the
first 3’000 steps of free-run mode is the regularisation validation error, the MSE
on the next 3’000 steps is the pruning validation error and finally the MSE on
the remaining 10’000 steps is the test error.

We apply in the present contribution exhaustive pruning, i.e. we try to prune
each neuron at each stage. When pruning neuron i, we remove its connection to
the readout before training (i.e. we remove the i-th row of S used for training).
Once trained, the network runs in free-run mode in order to compute the pruning
validation error corresponding to pruning neuron i.

The pruning is applied as follows to a reservoir of size N :

1. The validation error of neuron i is computed for i = 1, . . . , N .

2. The readout connection k corresponding to the neuron k with the minimal
pruning validation error is pruned.

3. N := N − 1. If N = 1, stop; otherwise, go back to step 1.

Of course, the algorithm can be stopped earlier, if for instance the error
increases significantly with the pruning.

One has to note that this requires to re-train and then re-run (in free-run)
the whole network at each step and for each neuron (in order to compute the
pruning validation error of each neuron). This algorithm is thus computationally
demanding.

A possible optimisation comes from the solution of equation (3). The bot-
tleneck when computing this solution is the product S ·ST 1. Removing neuron
i, i.e. removing the i-th row of S before computing the product is equivalent to
computing the product and then removing the i-th row and i-th column of the
resulting matrix. It is thus possible to only once compute the original product
and then to apply the pruning directly on the result.

Another suboptimal approach is a heuristic based on ridge regression: one
can remove the n readout connections with smallest weights after training with
ridge regression. Another heuristic can use the Rayleigh criterion (like Fisher
discriminant), however this only applies to classification tasks with a finite num-
ber of classes [7].

3 Experimental Results

We now present the results obtained by applying pruning to the Multiple Su-
perimposed Oscillator (MSO) task [2, 11], where the goal is to generate a su-

1The number of neurons (i.e. the height of S) is typically much smaller than the number
of data samples (i.e. the length of S)

3

perimposition of two sine waves, sin(0.2t) + sin(0.311t). We present the results
with and without regularisation. When there is regularisation, the optimal λ is
found by grid-search, by optimising the regularisation validation error.

As a reservoir is created randomly, the results are averaged over 25 different
random reservoirs2. In order to account for the different possible cases described
sooner (i.e. ”explosion”, ”fading out” and ”stable”), we plot here the base-10
logarithm of the test error, i.e. of the mean square error between the desired
output and the ESN output over the last 10’000 time steps. For reference, a
”fading out” effect will lead to an error around 0.

The results are shown in Figure 1. In Figure 1(a), we can see that the
regularisation helps to drastically decrease the error (the two solid lines), even
without pruning. Then, when pruning is applied, the error is further decreased
by 3 orders of magnitude (solid thick line). It is interesting to see that when
there is no regularisation, pruning out connections (dotted thick line) can achieve
the same performance as when there are both regularisation and pruning. Note
that when using classical approach, the number in the abscissa is the numbers
of neurons in the reservoir, but when using pruning it is the number of readout
connections left unpruned while the reservoir has always 50 neurons. However,
pruning can still decrease the error with respect to an unpruned reservoir of 50
neurons.

Figure 1(b) shows a comparison of different pruning techniques (with regu-
larisation): exhaustive, ridge-based and random pruning as a baseline. We see
that ridge-based pruning performs better than random pruning. It could thus
be used in practice, when training time is an issue. However, exhaustive pruning
is still significantly better than ridge-based pruning.

Figure 1(c) shows the average pair-wise correlation coefficient between the
activation of the different neurons connected to the readout. The results with
(thick line) and without (thin line) regularisation are shown. We observe that
when there is no regularisation, the correlation decreases with pruning. This is
because basic least square methods perform optimally if the input is decorrelated
[10], and thus the pruning picks the most orthogonal neurons.

Finally, Figure 1(d) shows the average spectral radius of the loop matrix
Wloop. A stable ESN is characterised by a spectral radius close to 1. When
there is no regularisation (thin line), the spectral radius is larger than one, as
expected intuitively (as there is no weight decay). Pruning out connections can
then help to decrease the spectral radius towards 1 and stabilise the ESN.

4 Discussion and conclusions

We applied a method to prune the connections from a reservoir to the readout
in order to increase the generalisation ability while decreasing the hardware
requirements. The results show that the pruning can be used as a way to further

2The reservoir is created as follows: each element of Wr
r is sampled from a normal distribu-

tion, and the whole matrix is then re-scaled to have a spectral radius of 0.9, and each element
of Wr

o is sampled from a normal distribution and then divided by 100.

4

10 20 30 40 50

−20

−15

−10

−5

0

5

10

 # neurons
readout connections

lo
g 10

(M
S

E
)

std std + reg. prun. prun. + reg.

10 20 30 40 50

−20

−15

−10

−5

0

readout connections

lo
g 10

(M
S

E
)

exhaustive
ridge−based
random

(a) (b)

40 42 44 46 48 50
0.6

0.65

0.7

0.75

0.8

readout conn.

co
rr

el
at

io
n

regul.
no regul.

40 42 44 46 48 50
0.95

1

1.05

1.1

1.15

readout conn.

sp
ec

tr
al

 r
ad

iu
s

regul.
no regul.

(c) (d)

Fig. 1: Experimental results for the MSO task. The bars represent the standard deviation. (a)
comparison of results with (thick lines) and without (thin lines) pruning, and with (solid lines)
and without (dashed lines) regularisation; note that the abscissa gives the number of neurons
in the reservoir for the results without pruning and the number of readout connections for the
pruning case. (b) comparison of the different pruning methods: exhaustive, ridge-based and
random. (c) average pairwise correlation coefficient for exhaustive pruning with (thick line)
and without (thin line) regularisation. (d) spectral radius of the loop matrix with (thick) and
without (thin) regularisation. Note that for (c) and (d), only the first pruning steps are shown
and the vertical axis does not start at the origin.

5

regularise the readout and that it is best used along with another regularisation
technique like ridge regression. For comparison purposes, random pruning has
been tried, and it appeared that it is significantly different from the results
obtained with the exhaustive pruning.

The main drawback of this technique is its computational requirement. How-
ever, it should be pointed out that this is only at training time. Once the readout
is trained, the pruning only decreases the computational requirement in both
software and hardware.

We have shown that the basic mechanism behind pruning in the case of
basic linear readout is orthogonalisation of the sub-reservoir. This shows that
reservoirs which are used with for example Least Mean Square regression need
to be as decorrelated as possible.

As future work we plan to apply the above pruning rules to more complex
real-world tasks to show that the better generalisation via pruning extends to
real applications. We also envisage to further study the properties of optimally
pruned sub-reservoirs and try do derive construction criteria or local learning
rules which are able to construct reservoirs with the good properties found in
these sub-reservoirs. This study will be a first step towards understanding what
the important underlying properties of good reservoirs are.

References

[1] W. Maass, T. Natschläger, and H. Markram. Real-Time Computing Without Stable
States: A New Framework for Neural Computation Based on Perturbations. Neural
Computation, 14:2531–2560, 2002.

[2] H. Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.
Technical report, 2001.

[3] J. J. Steil. Backpropagation-Decorrelation: online reccurent learning with O(N) complex-
ity. Proc.IJCNN, 1:843–848, 2004.

[4] M Lukoševičius and H. Jaeger. Overview of Reservoir Recipes. Technical report, 2007.

[5] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and applications
of Echo State Networks with leaky integrator neurons. Neural Networks, 2007.

[6] J. J. Steil. Online Reservoir Adaptation by Intrinsic Plasticity for Backpropagation-
Decorrelation and Echo State Learning. 2006.

[7] X. Dutoit, H. Van Brussel, and M. Nuttin. A First Attempt of Reservoir Pruning for
Classification Problems. In Proceedings of the 15th European Symposium on Artificial
Neural Networks, pages 507–512, Bruges, Belgium, 2007.

[8] D. Verstraeten, B. Schrauwen, and D. Stroobandt. Reservoir Computing with Stochastic
Bitstream Neurons. In Proceedings of the 16th Annual ProRISC Workshop, pages 454–
459, 2005.

[9] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. Van Campenhout. Compact hardware
for real-time speech recognition using a Liquid State Machine. In Proceedings of the 20th
International Joint Conference on Neural Networks, page on CD, 2007.

[10] A. Hoerl and R. Kennard. Ridge Regression: Biased Estimation for Nonorthogonal Prob-
lems. Technometrics, 42:55–67, 1970.

[11] Y. Xue, L. Yang, and S. Haykin. Decoupled Echo State Networks With Lateral Inhibition.
Neural Networks, 20:365–376, 2007.

6

