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Abstract. In this paper we apply three pattern recognition methods (support vector machine, 
cluster analysis and principal component analysis) to distinguish regulatory regions from 
coding and non-coding non regulatory DNA sequences. Using a new feature representation (the 
degree by which motifs are over- and under-represented) we demonstrate the remarkable power 
of this methodology in identifying regulatory regions of Drosophila melanogaster. 

1 Introduction and related work 

Variation in the complexity of organisms appears to be due to differences in the 
regulation of gene activity rather than to differences in the genetic specifications for 
protein coding per se. Whereas the general principles underlying the translation of the 
coding regions of genes (exons) into their protein products are largely comprehended, 
the relationship between a gene’s expression and the information contained in (non-
coding) regulatory regions of the genome is not so well understood. These regulatory 
regions contain Transcription Factor Binding Sites (TFBS), short sequences of DNA 
which are often located upstream or downstream of the position where gene 
transcription begins (although regulatory activity may also occur within a gene, or in 
the case of enhancers, far removed from genes). In turn, these binding sites are 
“recognized” by transcription factors, proteins that - upon binding to them - act as 
repressors or activators, thus controlling the rate of transcription. According to [1] as 
much as 50% of the metazoan genome is regulatory. However, most of this is not yet 
deciphered as it is extremely difficult to identify regulatory regions computationally.  
Part of the problem lies in defining appropriate attributes (features) that characterize 
regulatory regions, but also in the choice of an effective discriminating algorithm. We 
want to find solutions to this identification problem by considering both a newly 
developed feature set and exploring the application of various machine learning 
techniques.  
     Our feature space is based on the assumption that regulatory regions stand out by 
the clustering and frequency of TFBSs. Because these TFBSs in turn are short strings 
of particular nucleotide compositions (so-called “motifs”), we used the statistical 
over- and under-representation of all possible motifs of a given stretch of DNA as the 
input and feature vector representing that stretch of DNA. Some classifier methods 
have recently been employed to predict regulatory motifs [2, 3] and gene regulatory 
networks [4] as well as to detect functionally similar proteins [5-7]. Among these 
classification methods, Support Vector Machines (SVM) enjoy an increasing 
popularity. However, although SVM has been used to identify TFBSs up till now 

481



there are no applications of SVM to distinguish regulatory sequences from other types 
of functional DNA. In addition, we use two non-supervised techniques (hierarchical 
cluster analysis and principal component analysis) to back up the performance and 
visualize the results of the supervised SVM. 

2 Data 

To train and test our classifiers we use three data sets. The positive training set is a 
collection of 60 experimentally verified functional Drosophila melanogaster 
regulatory regions [8] located far from gene coding sequences and transcription start 
sites (i.e. enhancers instead of promoters). It contains the most significant clusters of 
binding sites for five transcription factors (Bicoid, Hunchback, Kruppel, Knirps and 
Caudal) involved in the regulation of developmental genes. The total size of the 
positive training set comprises about 68 Kb of sequence data. The two negative 
training sets are: (i) 60 randomly picked Drosophila internal exons, and (ii) 60 
randomly picked Drosophila non-coding, non-regulatory (NCNR) sequences using 
the Ensembl Genome Browser (http://www.ensembl.org/). For the latter, we left out 
exons and, to exclude possible promoters, regions 1Kb upstream and downstream of 
genes. Each training set contains 68 Kb of sequences in total. A detailed description 
of the selection procedure can be found in [9].  

3 Methods 

3.1 Feature representation  

We represent each of the i = 1, 2, …, 180 sequences in our training sets by the n-
dimension vector   
 
   F(seqi) =(Zj

1 ,Zi
2 , …,Zi

n )                                  (1) 
 
The elements Zi

j of this vector measure the degree of over- or under-representation 
(“Conspicuousness”) of all possible “words” of a length of m nucleotides (that is, all 
the j = 1, 2, …, 4m permutations of A, C, T and G) for sequence i. In this paper we 
fixed word length at three (implying n = 64 possible words), and allowed for at most 
one mismatch. The conspicuousness of a word was assessed as the normalized 
difference between the observed and expected number of occurrences of that word 
given single nucleotide independence, i.e.  
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where N(X) is the frequency of a word X and E(X) and Var(X) are its expectancy and 
variance respectively. For a formal derivation of the expectancy, see [10]. 
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3.2 Support Vector Machine (SVM)  

Essentially, SVMs [11, 12], like perceptrons and neural networks, allows the 
classification of a new sequence based on a training model. A core component of a 
SVM [13] is the kernel function, which takes a similar role as the activation function 
in the perceptron. However, whereas the activation function is based on a linear 
combination of the coordinates of each separate object (input) to be classified, the 
kernel takes into account relationships among objects as the pair wise similarity 
between them. A kernel function is derived by first choosing an appropriate feature 
space, representing each sequence as a vector in this space, and then by taking the 
inner product (or a function derived from it) between these vector representations. By 
defining non-linear kernels, the SVM is able to achieve non-linear separability and in 
this sense outperforms the perceptron. Furthermore, apart from constructing a 
separating hyper plane, the SVM finds the (support) vectors that define the maximal 
margin, the distance to two parallel hyper planes on each side of the hyper plane. The 
novelty of our approach is the Z-score representation of a DNA sequence as the 
feature vector and input space in a two-step approach. First, we separated coding from 
non-coding DNA with the help of the model ‘coding versus rest' DNA. Next, within 
the class of non-coding DNA, we made a further distinction by means of a ‘regulatory 
versus non-regulatory' model. To train these models, we submitted half of our 
experimentally verified sequences to the models, using other half for testing. Training 
and testing was carried out by the package Libsvm [15], with a default Gaussian RBF 
kernel function and the soft margin option. The parameters were adapted by 5-fold 
cross-validation. 

3.3 Cluster analysis  

Given the vector representation of each sequence (1), a similarity matrix was created 
by calculating the pair wise Euclidian distances in the 64-dimensional space between 
all the 180 sequences. Those sequences that are closest together are unified in initial 
clusters. Ward’s algorithm was used to combine these initial clusters into clusters at 
higher levels of dissimilarity. Ward’s method is an unsupervised hierarchical 
clustering procedure by which those clusters are combined that minimize the variance 
of the distance between its members. If over- and under-representation are indeed 
important attributes of regulatory regions, we expect these regions to be into taken 
together in one cluster and to be separated from the other, non-regulatory sequences 
of DNA. 

3.4 Principal Component Analysis 

PCA is a classification method that reduces dimensionality by finding the principle 
components that explain a predefined proportion of the variance of the data. Principle 
components are linear combinations of the original variables, the 64 features in our 
sequence representation (1). 
Ideally, applied to our data, three PCs (representing the three types of DNA) should 
explain a major proportion of the variance of the Z-scores. 
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4 Results 

4.1 SVM results 

With the two-step procedure described in the Methods, we obtained a very good 
separation of coding DNA from other DNA types with an overall accuracy 97 % at 
the first step (see the ROC-curve at the left in Figure 1): 
 
                      
 
        
 
 
 
 
 
 
 Fig. 1: ROC (overall threshold-independent accuracy) curves for coding and non-coding 
 DNA separation (left), and regulatory and NCNR separation (right). 
 
The second step predicted regulatory DNA with a 95 % overall accuracy (see the 
ROC-curve at the right in Figure 1) 
   
The performance of the SVM classifier is summarized in Table 1. 
 
  

 

 

 Table 1. Sensitivity and overall accuracy (in percentage) of the SVM prediction results 
 for different models and training sets. 

The predictions depend on a threshold, pre-computed by the SVM classifier. Here the 
intersection between specifity and sensitivity was taken as the optimal threshold 
value. Overall accuracy is the area under the ROC curve and is threshold independent. 

4.2 Cluster analysis  

The dendrogram in Figure 2 clearly shows two distinct clusters and separates coding 
from regulatory regions well. The first cluster contains only 5 of all 60 coding 
regions, whereas the second virtually lacks regulatory regions. Non-coding non-
regulatory regions are not separated and are equally spread over the two clusters 

4.3 PCA  

Similar to clustering analysis results, PCA separates coding from regulatory DNA.  

MODEL/ SENSITIVITY OVERALL
TEST SET PREDICTIONS Exons Regulatory NCNR ACCURACY

Exons vs Non-Coding 85.3 95.3 96.5 97

Regulatory vs NCNR 93.3 85.6 95
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 Fig. 2. Dendrograms of the cluster analysis (Euclidean distance, Ward’s method) of the 
 180 sequences. 
 
Eleven principle components were needed to explain ~70% of the variance. However, 
half of this is concentrated in the first PC. Plotting the first two PCs against each 
other, shows a separation between regulatory regions (which have high values on the 
first axis) and coding regions (Figure 3). 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 Fig.3. PCA on the 180 sequences. The first two principle components account for 42%  
 of the variance. 

5 Discussion and conclusions   

Given the difficulty in distinguishing regulatory modules, as reflected in the generally 
poor results of a number of popular algorithms to discover TFBSs [16], our 
methodology yields a surprisingly good differentiation between functional DNA 
sequences. It outperforms SVM applications based on string [4] and mismatch kernels 
[5]. The latter worked well for the detection of functionally similar proteins, but 
achieved no more than about 50% accuracy when we trained them on our data. 
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Apparently, the over- and under-representation of words is a critical feature of 
regulatory regions that probably has to do either their mode of operation and intrinsic 
statistical properties. However, although our method gave a good discrimination, the 
number of support vectors needed to define the margins was quite large, which points 
to the noisy nature of the data. This is also evident from the rather low proportion of 
the overall variance accounted for by the first two principal components. Furthermore, 
because our positive training set is based solely on enhancers involved in the early 
development of Drosophila, the results may be species, tissue and phase specific. 
Experimentally verified data from a larger range of species and conditions are 
therefore needed to support the generality of our findings. 
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