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Abstract.

In this paper we solve the problem of classifying chestnut plants according

to their place of origin. We compare the results obtained by state of the art

classifiers, among which, MLP, RBF, SVM, C4.5 decision tree and random

forest. We determine which features are meaningful for the classification,

the achievable classification accuracy of these classifiers families with the

available features and how much the classifiers are robust to noise. Among

the obtained classifiers, neural networks show the greatest robustness to

noise.

1 Introduction

One of the main activities of botanic science is plants classification. As a typ-
ical problem of pattern recognition some basic issues must be addressed: (1)
which attributes, called features, should be used from botanists’ descriptions for
classification, (2) which classifiers should be used in order to obtain, with the
available features, a high classification accuracy, and finally (3) at which extent
the classification accuracy degrades if the features are affected by noise. These
issues are discussed in this article. We face the problem of the prediction of
chestnut origin from their properties: this problem has many important indus-
trial applications, such as production and verification of certificates of product
origin. At first we worked with few features related only to fruit peculiarities.
We compared the classification accuracy obtained by these features by many
state of the art classifiers: a multi-layer perceptron (MLP), introduced by D.
Rumelhart et al. [2], a radial basis function network (RBF), a support vector
machine [8], a C4.5 decision model induced by C4.5 algorithm [3] and a random
forest (RF) presented by L. Breiman [4]. The extremely poor classification per-
formances obtained (see Section 3), suggested us to perform a initial selection
of the classifiers and to seek for more informations. In fact, the initial features
were supposed to be not appropriate due to the excessive variability of value
from fruit to fruit. Thus, we added to the description of each chestnut instance,
some features related to the entire plant with the idea that they could constitute
more robust predictors. The larger data set so obtained (soon available on line)
contains 1600 samples, described by 37 features taken from both chestnut plants
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and fruits. They are all the necessary informations to discriminate among the
different classes. A choice of the best subset of these features must however be
performed remembering that botanic features are extracted, collected and stored
in a data set by human agents. This process is lengthy, costly and error-prone.
As a consequence, the number of features should be reduced as much as possible
but this reduction should not affect the classification performance.

In addition, it is very important to investigate how a classifier answers when
noisy inputs are presented. We show that the selected classifiers, especially in
the case of neural networks, are also robust to the presence of a noise amount
consistent with the small perturbation assumption (maximum error=5% of the
value of each feature).

This paper is structured as follows. In Section 2 we overview the selected
classifiers: C4.5 decision trees and the random forest (MLP is a widely known
method and will not be reviewed). In Section 3 we discuss the feature selection
strategy and present the experimental results, in both non-noisy and noisy cases.

2 Overview of C4.5 decision trees and Random Forest

For the sake of completeness we introduce some of the basic characteristics of
the adopted learning models. A complete overview can be found in [3, 4, 5].

Decision trees. A decision tree is a structure whose internal nodes answer to a
test condition based on the value of some of the record attributes. Each outcome
of the test condition leads either to another internal node or to a leaf node which
contains a class value. That class value is the prediction of the decision tree for
the set of data records that reach that final node. Thus, the outcomes of the
attribute tests separate data records with different characteristics into disjoint
partitions that are homogeneous for the class value.

The induction step in C4.5 follows a greedy strategy that grows a decision
tree by progressively partitioning the training data into smaller partitions until
each of them is homogeneous in the value of the class label. C4.5 algorithm
induces the form of the decision tree, i.e., chooses the test condition at each
node t of the tree by the following rule. Let denote by S the set of data records
that reach node t. Given c class labels, let p(i, S) denote the fraction of records
in S that belong to class i. Any attribute test at node t is evaluated by entropy
of the class value in S, denoted by E(S):

E(S) = −

c−1∑

i=0

p(i, S)log2[p(i, S)]

Entropy is a measure of impurity of the class in S. The best attribute test
at node t is selected as that one that allows the higher difference between the
entropy at the parent node t (before the test condition) and the entropy at the
children nodes (after the test condition).

272



Random forest. Significant improvements in classification accuracy have re-
sulted in a set of methods called ensemble methods. They consist in the gener-
ation of multiple, base classifiers from training data and successively combining
the predictions of each of them in test. Random forest is a special ensemble
learner, which is also suitable for problems involving a large number of features.
In a random forest a large number of decision trees is grown where each tree
depends on the values of a random vector, sampled independently and with the
same distribution for all trees. Random vectors are generated using an ensemble
method (called bagging) which randomly selects N features, with replacement
from the original training set. Each tree in a random forest is grown at least
partially at random in one of the following ways: (1) randomness is injected
by growing each tree on a different random subsample of the training data; (2)
randomness is injected into the attribute test selection process so that the test
condition at any node is determined partially at random. When multiple trees
are generated, their predictions are usually combined so that the most popu-
lar class among them is predicted. The technique of majority voting is usually
adopted (where majority is eventually weighted by giving more weight to the
more correct trees).

3 Experimental results

In this section we describe in more details the feature selection method, the
generation of the training and test sets and the results obtained for the task
of classifying chestnuts according to eight places of origin. The initial data set
was made by 19 features describing 1600 samples taken from fruits and was
analysed using a cross validation methods with 10 folds. Classification results
from a MLP, a RBF, a binary decision tree (C4.5), a random forest (RF) and
John Platt’s sequential minimal optimization algorithm for training a support
vector classifier (SMO) are compared. We used the default settings of Weka
classification tools [8].

MLP RBF C4.5 RF SMO
58.12% 47.94% 49.81% 55.06% 52.50%

Table 1: Percentage of instances correctly classified.

Table 1 shows that classification accuracy was extremely poor. After some
attempts to optimize the models, we decided to add to the dataset more de-
scriptive features related to the entire plant. We had the hope that the high
number of features obtained (37) would be afterwards reduced by feature selec-
tion. The initial results also suggested us to reduce the number of classifiers in
the further investigations: MLP, chosen as the best of neural methods, C4.5 (the
classical and largely used decision tree method) and random forest (because of
its robustness to noise and scalability).
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3.1 Feature selection

In feature selection, the goal is to find a subset of significant attributes able to
correctly predict unseen data and to reduce both human measurement errors and
the cost activity of data extraction from plants and fruits. Ranking of features
is possible since a large number of feature evaluation measures is available (see,
for instance [6, 7] for a survey on some of them).

In our experiments, we tested on the whole dataset some commonly used
methods for classification purposes, available in Weka. Some of them are filter

methods, that select features on the basis of measures of feature predictivity and
redundancy, like: Symmetrical Uncertainty (SU), Chi-square statistic, Gain Ra-
tio and Information Gain. Others are wrapper methods, based on the accuracy
that some learner is able to reach on the data with the selected set of features,
like: attribute selector based on instance-based learners, attribute subset eval-
uator based on any learner, and oneR methodology based on simple rule-based
classifiers. We verified that all of these methods agree on the selection of a unique
core of relevant features, determined applying the above cited feature selection
methods as ranking methods for the overall set of features. Selected core is made
of features which are present, in the first 10 positions of the rankings. We no-
ticed that it is exactly the feature set selected by entropy-based information gain
criterion. This criterion is commonly used by decision tree algorithms when they
select which attribute will become a test attribute in a given branch of the tree.
Thus, information gain criterion was finally used to select the core of 6 relevant
features among the 37 initial ones. They are: number of chestnuts/kg, diameter
of the trunk, number of female inflorescence/ament, ament length, length of the
leaf limb and height of the plant. We verified through comparison of classifica-
tion performances that no information content was lost in this process; on the
contrary classification performances improved because of redundancy reduction
in instance description.

3.2 Classification performances in non-noisy datasets

The training set is a list of T = 1120 instances randomly chosen from original
data set (70% of the overall data set). The test set includes the remaining 480
instances. Training set has been used to optimize the three classifiers. Random
forest has been built by a forest of decision trees built on the 6 features and
trained each on a different training set, built by random selection of samples
with replacement (first option).

MLP classifier has 6, 12 and 8 neurons (one for each geographic zone) respec-
tively in input, hidden and output layers. We optimized the number of hidden
neurons and the most relevant parameters with respect to Weka default because
performances compared with those obtained with C4.5 and RF were lower. The
training phase required 100 iterations.

Decision tree and random forest produce a correct classification of all input
instances while neural network correctly classifies 97.91 % of the instances.

274



3.3 Classification performances in noisy datasets

We also evaluate the sensitivity of the three models to noise. A noisy test set
was created perturbing separately each attribute of every instance according to
the following equation:

i′[A] = i[A] + 0.05 · η · i[A]

where i[A] is the value of the attribute A in the i-th instance and η is a random
value (−1 ≤ η ≤ 1). The three classifiers were finally run on the perturbed data
set i.e. on the noisy version of the test set.

Fig. 1: Accuracies on test set
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Fig. 2: Accuracy decrease.

Figure 1 shows the classification accuracy obtained by the different classifiers
on non-noisy and noisy versions of the test data. It is clear that without noise
the decision tree and the random forest reach a slightly higher accuracy rate
than the neural network. On the contrary, on noisy data, the neural network
maintains its good performance while the decision tree and the random forest
degrade seriously the previously obtained results.

We also performed a paired, one-tail t− test on the statistical significance of
the difference in accuracy of the classifiers, conducted on the 480 test samples.
The null hypothesis is that one classifier has a classification accuracy lower than
the other one (mean difference≤0). The observed differences between MLP and
RF lead to a critical value tc = 1.435 so that the null hypothesis is rejected with
a p-value of 0.75%. For the difference in accuracy between MLP and C4.5 the
critical value is tc = 5.185 while it is tc = 4.969 for the difference between RF
and C4.5, both corresponding to a p-value of 10−5%.
We also examined closely the classifier behavior w.r.t. an increasing number of
noisy features in the data set. Figure 2 shows the performance decrease when
the number of noisy features increases from 0 to 6 for decision tree (+), random
forest (△) and multilayer perceptron (∗).
Results remark that neural networks are quite stable because class prediction
results marginally affected by the presence of noise. On the contrary, decision
tree and random forest are more sensitive. Although decision tree and random
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forest reach higher accuracy in a clean test data, classification accuracies result
proportionally more affected by an increasing presence of noise. In conclusion,
when decision trees and random forests are used as predictive models in the
context of this peculiar domain, they are less robust with respect to neural
networks to the presence of noise. This is an important issue for a learner,
employed in a real environment, in which commonly some features are affected
by noise or human error. The interested reader can find more experimental
results in [1].

4 Conclusions

In this paper we compare the accuracy of classification of chestnuts according
to their place of origin. We used state of the art learners: decision trees, ran-
dom forests, multilayer perceptrons, radial basis functions networks and support
vector machines. The results, in the context of this peculiar domain, confirm
the robustness of neural network classification techniques and their reliability
for treating noisy data. Even though decision trees and random forests reach
higher accuracy rates on clean and safe test data, when noise is present, they
result less robust and stable.

In this study we have also experimented the importance of feature selection
for classification of botanic species. We applied several feature ranking methods.
All of them agree on the selection of a core of 6 features (only 16%) as the
most predictive and least redundant ones that still allow to obtain comparable
classification results.
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