
An Accelerated MDM Algorithm for SVM
Training

Álvaro Barbero, Jorge López, José R. Dorronsoro ∗

Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. In this work we will propose an acceleration procedure for the
Mitchell–Demyanov–Malozemov (MDM) algorithm (a fast geometric algo-
rithm for SVM construction) that may yield quite large training savings.
While decomposition algorithms such as SVMLight or SMO are usually the
SVM methods of choice, we shall show that there is a relationship between
SMO and MDM that suggests that, at least in their simplest implemen-
tations, they should have similar training speeds. Thus, and although we
will not discuss it here, the proposed MDM acceleration might be used as
a starting point to new ways of accelerating SMO.

1 Introduction

The standard formulation of SVM training seeks to maximize the margin of a
separating hyperplane by minimizing ‖W‖2/2 subject to yi(W ·Xi + b) ≥ 1, i =
1, . . . , N ; we assume a linearly separable training sample S = {(Xi, yi)} with
yi = ±1. Any pair (W, b) verifying the previous restrictions is said to be in
canonical form. However, in practice the problem actually solved is the simpler
dual problem of maximizing LD(α) =

∑
i αi − 1

2

∑
i,j αiαjyiyjXi · Xj subject

now to αi ≥ 0,
∑

i αiyi = 0. The optimal weight W o can be then written in
the so–called dual form as W o =

∑
αo

i yiXi and patterns for which αo
i > 0 are

called support vectors (SV). Among the many methods proposed to maximize
LD(α), Joachim’s SVMLight [1] is probably the fastest one. It repeatedly solves
simpler maximization problems working with a restricted set of q candidate SVs.
When q = 2 these reduced problems can be solved analytically and SVMLight
coincides then with Platt’s SMO algorithm [2], also a popular, efficient and quite
simple algorithm.

SVM training can also alternatively cast [3] as a Nearest Point Problem
(NPP), where we want to find the closest points W ∗

± in the convex hulls of the
positive (i.e., y = 1) and negative samples. More precisely we want to minimize
‖W+−W−‖2 =

∑
i,j αiαjyiyjXi ·Xj where

∑N
i=1 αi = 2,

∑N
i=1 yiαi = 0 αi ≥ 0.

If we work with a zero bias term b (which can be compensated working with
extended vectors X ′ = (X, 1)), NPP can be further reduced [4] to a Minimum
Norm Problem (MNP), where we want to find the vector W in the convex hull
C(S̃) of the set S̃ with the smallest norm. More precisely, we want to minimize
now ‖W‖2 =

∑
i,j αiαjyiyjXi ·Xj with

∑N
i=1 αi = 1, αi ≥ 0.

∗With partial support of Spain’s TIN 2004–07676 and TIN 2007–66862 projects. The first
author is kindly supported by FPU-MEC grant reference AP2006-02285.

421

MNP is a much older problem than SVM training and two algorithms to solve
it have been adapted to SVM construction, the Gilbert–Schlesinger–Kozinec
(GSK) [5, 6, 4] and the Mitchell–Demyanov–Malozemov (MDM) [7, 6]. The
MDM algorithm iteratively updates a weight vector Wt =

∑
αt

jyjXj , selecting
two vectors Xt

L = arg min {yjWt ·Xj}, Xt
U = arg max

{
yjWt ·Xj , αt

j > 0
}
, at

each step and updating Wt to Wt+1 = Wt + λt(yt
LXt

L − yt
UXt

U) = Wt + λtDt,
where

λt = min
{

αt
U ,
−Wt ·Dt

‖Dt‖2
}

= min
{

αt
U ,

∆t

‖Dt‖2
}

.

These updates can be expressed in terms of the α multipliers as αt+1
L = αt

L +λt,
αt+1

U = αt
U − λt, αt+1

i = αt
i ∀i 6= L,U . We note in passing that the above

formulae allow an easy kernel extension of the MDM algorithm that only requires
keeping track of the αt

j coefficients, the approximate margins dt
j = yjWt ·Xj and

the norms ‖Wt‖2. Observe that if λt = αt
U , αt+1

U = 0. Thus, the MDM algorithm
can remove previous wrong SV choices (something that GSK cannot).

At first sight, one could look at the MDM algorithm as too far away from
state–of–the–art SVM training methods such as SVMLight or SMO. However,
notice that at each step MDM chooses two updating vectors XL and XU and
adjusts two multipliers, just as SMO does. Thus, an alternative way of solving
the MNP problem could be to proceed a la SMO. In fact, we shall show in
section 2 that, after minor simplifications, doing so results in just the MDM
algorithm. While much faster than GSK, in some problems MDM may also
require too many iterations for wrong SV removal (see figure 1). In this work we
propose a procedure to accelerate MDM training in which we detect the possible
presence of training “cycles” and use them to construct a better updating vector.
Although those updates have a higher computational cost than the standard
ones, we shall illustrate in section 4 that significant training savings can be
achieved. Moreover, the previously mentioned MDM-SMO relationship suggests
that similar procedures could be successfully applied to accelerate SMO SVM
training. We will not, however, discuss them here, and the paper will end with
a short conclusion and some pointers to further work.

2 MDM and SMO

As just mentioned, one possibility when solving MNP could be to do it a la SMO;
that is, to work at each step with two coefficients that we denote as αi1 , αi2 , fixing
all the other αj and arriving at an analytical solution for this restricted version
of MNP. The new multipliers to be considered are thus α′i1 = αi1 + δi1 , α′i2 =
αi2 + δi2 and α′j = αj for all other. In dual form, the new vector W ′ considered
has thus the form W ′ = W + δi1yi1Xi1 + δi2yi2Xi2 . While several different
heuristics can be used in SMO to choose the first coefficient αi1 [8], the second
multiplier αi2 is selected so that there is a maximum decrease in ‖W ′‖2. Taking
into account the restriction

∑
i α′i = 1, we must have δi2 = −δi1 and, therefore,

we have W ′ = W + δi1 (yi1Xi1 − yi2Xi2) = W + δi1D and ‖W ′‖2 = ‖W‖2 +

422

Fig. 1: The MDM algorithm may require many iterations even in simple prob-
lems. However (right) they may have a cyclical structure.

2δi1W · D + δ2
i1
‖D‖2 = Φ(δi1), where D = yi1Xi1 − yi2Xi2 . The last equation

implies that the optimal δ∗i1 is given by δ∗i1 = −W ·D/‖D‖2. In turn, this yields
Φ(δ∗i1) = ‖W + δ∗i1D‖2 = ‖W‖2− (W ·D)2/‖D‖2. Thus, once the multiplier αi1

has been chosen, we can select i2 as i2 = arg maxj

{
(W ·Dj)

2
/‖Dj‖2

}
, where

Dj = yi1Xi1−yjXj . We can simplify the choice of i2 if we drop the denominator
‖Dj‖2, selecting then i2 as

i2 = arg maxj

{
(W ·Dj)

2
}

= arg maxj {|W · (yi1Xi1 − yjXj)|} .

The usual choice in SMO for αi1 is to take as the vector Xi1 the one that most
violates the KKT conditions. It is not clear how to bring this to an MNP setting
but a way of doing so is to observe that the pattern Xi1 for which the KKT con-
ditions are violated most is the one that sets the margin of the current vector W
and that, moreover, the SMO update will improve the margin of the new vector
W ′ at the selected Xi1 . The same heuristic can be applied in the MNP setting
if we choose i1 = arg mini {yi (W ·Xi)}. Now, since we also want to maximize
|W · (yi1Xi1 − yjXj)|, we can simply take i2 = arg maxj {yjW ·Xj}. Further-
more, the optimal δ∗i1 becomes now δ∗i1 = −W · D/‖D‖2 > 0, and, therefore,
δ∗i2 = −δ∗i1 < 0. Since we must ensure that α′i2 remains positive, αi2 must be
positive to begin with. Hence, we have to slightly refine our selection of i2 to
i2 = arg maxj,αj>0 {yjW ·Xj}. Now, and as discussed in the previous section,
the choices for i1 and i2 are exactly the updates that are used in the bias-free
MDM problem, i.e., we have L = i1, U = i2. In other words, solving the MNP
problem a la SMO yields the MDM algorithm.

3 Update Cycles in MDM Training

The main reason for the slow convergence of the GSK algorithm is that it requires
many iterations to remove a wrong initial choice Xi of a support vector, i.e., to

423

BCW HD GCr PID Ban Thy Spl
2σ2 104 103.5 103 102 1 1 101.5

C 10 10 1000 10 10 101.5 1

Table 1: SVM 2σ2 and C parameters used.

achieve αi = 0. On the other hand, we can remove a SV Xi2 in the MDM
algorithm if we would have δ∗i2 = W · D/‖D‖2 = −αi2 . However, this is not
guaranteed to happen and, in fact, wrong initial choices of support vectors may
also be hard to correct by the MDM algorithm. This is shown in figure 1: it
is clear that the optimal W ∗ must be placed on the rhomboid face closer to 0;
however, if we start the MDM iterations on the lower right vector, it may take
quite a few iterations before the MDM updates reach that face. In other words,
the MDM will eventually reach the appropriate lower dimensional face removing
thus the wrong initial vector choice, but quite often after many iterations as
those described in figure 1, right.

The zigzags in that figure illustrate the more general presence of cycles within
MDM training, where if a certain update vector DT has reappeared after K steps
from a former instance DT−K , it is likely that, somewhere later in training,
the intermediate updates DT−j , 1 ≤ j ≤ K − 1, will also be repeated, that is
Dt−j = DT−j for some t > T . For instance, this is what happens in figure 1, that
also suggests a possible way out of this. Notice that if we used V = λ1D1+λ2D2,
with D1, D2 the first updates in figure 1, right, as an updating direction, we
could reach the right face in a single update minimizing ‖W2 + λV ‖2. Once
there, just another step brings us to the optimal W ∗. For a more general cycle
DT−K , DT−K+1, . . . , DT−1, DT = DT−K , we could define V =

∑K
j=1 λT−jDT−j

and, instead of the MDM standard update, consider one of the form WT+1 =
WT +λT V , where λT minimizes the norm ‖WT +λV ‖2. It can be easily seen that
the optimal λT is given by λT = −WT · V/‖V ‖2. These new updates require
the efficient computation of WT+1 · V and ‖V ‖2, as well as that of the new
coefficients αT+1

j and approximate margins dT+1
j = yjWT+1 ·Xj .

Let I = {i1, . . . , iM} be the index set of those patterns Xih
that appear as ei-

ther XL or XU in V . We have then V =
∑K

j=1 λT−j

(
yT−j

L XT−j
L − yT−j

U XT−j
U

)
=

∑M
h=1 µhyih

Xih
, where for T − K ≤ p, q ≤ T − 1 we use the notation µh =∑

Xih
=Xp

L
λp−

∑
Xih

=Xq
U

λq. It is clear now that ‖V ‖2 =
∑

m,n µmµnyim
yin

Xim
·

Xin
. As for the new dT+1

j , we have dT+1
j = yjWT+1 ·Xj and, hence,

dT+1
j = yjWT ·Xj + yjλT

M∑

h=1

µhyih
Xih

·Xj . = dT
j + yjλT

M∑

h=1

µhyih
Xih

·Xj .

Finally,
∑

j αT+1
j yjXj = WT+1 = WT +λT V =

∑
j αT

j yjXj+λT

∑M
h=1 µhyih

Xih
,

and it follows that αT+1
j = αT

j if j /∈ I, αT+1
ih

= αT
ih

+ λT µih
, where the last

424

Std. MDM Accel. MDM
Dataset # KOs # iters. # KOs # iters. # KO reduct.
BCW 1,354.01 2.76 862.94 1.41 36.27 %
HD 2,699.47 5.51 919.43 1.45 65.94 %
GCr 4,549,640.18 2,523.37 508,670.08 215.961 88.82 %
PID 24,564.49 17.91 18,053.01 10.67 26.51 %
Ban 622,856.43 65.26 610,072.00 63.76 2.05 %
Thy 930.80 2.44 487.34 1.00 47.64 %
Spl 50,501.98 8.84 50,337.28 8.81 0.33 %

Table 2: Average number of kernel operations and iterations (both in thousands)
for the standard and accelerated MDM algorithm and % reduction in kernel
operations achieved by the second method.

updates must also verify 0 ≤ αT+1
ih

= αT
ih

+ λT µih
≤ 1. If µih

> 0, the rele-
vant bound is the upper one, while the lower one has to be checked if µih

< 0.
This implies that for these special cycle updates we must clip λT from above as
λT ≤ min

{
(1− αT

ih
)/µih

: µih
> 0

}
and also as λT ≤ min

{−αT
ih

/µih
: µih

< 0
}
.

We will numerically illustrate next the proposed procedure.

4 Numerical Experiments

We shall illustrate the previous procedure over the datasets breast cancer–
Wisconsin (BCW), heart disease (HD), Pima Indians’ diabetes (PID), German
credit (GCr), banana (Ban), thyroid (Thy) and splice (Spl). While originally in
the UCI database, we shall work here with their versions in G. Rätsch’s Bench-
mark Repository [9]. These problems are not linearly separable and, as usual, we
will consider margin slacks ξi and use a square penalty term C

∑
i ξ2

i , where C is
an appropriately chosen parameter. An advantage of this is that the linear theory
extends straightforwardly to the square penaly setting by considering extended
vectors and kernels [8]. The original patterns have 0 mean and 1 variance compo-
nentwise and work with the Gaussian kernel k(x, x′) = exp

(−‖x− x′‖2/2σ2
)
.

Table 1 summarizes the 2σ2 and C values used. These last values have been
obtained by an optimal grid search. In the experiments we have not used the
train–test splits in [9], performing instead a random 10 × 10 cross validation
procedure. Notice that at the optimal W ∗ we must have for all support vectors
yjW

∗ ·Xj = m∗, where m∗ denotes the optimal margin. We have thus stopped
training at the first iteration t at which 0 ≤ yt

UWt ·Xt
U − yt

LWt ·Xt
L ≤ γ‖ Wt‖2,

for some precision parameter γ.
We have compared standard MDM training with the accelerated procedure

described in section 3 in terms of both the average number of iterations and of
kernel operations required. We report them in table 2 for γ = 0.001. The table
also shows as a percentage the reduction of the number of kernel operations

425

achieved. As it can be seen, while the efficiency gain is small for the splice and
banana datasets, there are large savings for the other five, that can go above 65 %
for the heart disease problem and above 88% for German credit datasets (similar
results are obtained for the less precise γ = 0.01). These gains come without any
loss in accuracy efficiency. We do not report here by space limitations, but they
are essentially the same for standard and accelerated MDM, and mostly coincide
with those reported in [10] (see also [9]). Notice however that accuracies are not
really comparable: remember that our train–test splits are different from those
used in [10] and we use square penalties instead of the linear ones in [10].

5 Conclusions and Further Work

In this work we have shown that we can take advantage of the presence of cycles
in the updating sequence Dj used by the MDM algorithm by collapsing these
vectors in a single update that gives a better minimizing direction. As we have
seen, very large savings in the number of iterations and kernel operations can be
obtained for some problems (although they can be more modest in some others).

While initially designed to solve the Minimum Norm Problem, we have shown
that the MDM algorithm can be related to SMO, one of the most efficient and
popular SVM training methods. This suggests that it may be worthwhile to
study in more detail the relationship between the SMO and MDM algorithms in
the general non zero bias case and to try to derive direct acceleration methods
for SMO. This, the relationship between the MDM and the q = 2 SVMLight
algorithm and the characterization of those problems for which the proposed
procedure is likely to produce larger training savings, are being studied.

References

[1] T. Joachims. Making large-scale support vector machine learning practical. Advances in
Kernel Methods - Support Vector Machines, pages 169–184, 1999.

[2] J.C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. Advances in Kernel Methods - Support Vector Machines, pages 185–208, 1999.

[3] K.P. Bennett and E.J. Bredensteiner. Duality and geometry in svm classifiers. Proc. 17th
Int. Conf. Machine Learning, pages 57–64, 2000.

[4] V. Franc and V. Hlavac. An iterative algorithm learning the maximal margin classiffier.
Pattern Recognition, 36:1985–1996, 2003.

[5] E.G. Gilbert. Minimizing the quadratic form on a convex set. SIAM J. Contr., 4:61–79,
1966.

[6] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murphy. A fast iterative
nearest point algorithm for support vector machine classifier design. IEEE Transactions
on Neural Networks, 11(1):124–136, 2000.

[7] B.F. Mitchell, V.F. Dem’yanov, and V.N. Malozemov. Finding the point of a polyhedron
closest to the origin. SIAM J. Contr., 12:19–26, 1974.

[8] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, 2000.

[9] G. Rätsch. Benchmark repository. ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

[10] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning,
42(3):287–320, March 2001.

426

