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Abstract. This paper introduces a visual zebra crossing detector based
on the Viola-Jones approach. The basic properties of this cascaded clas-
sifier and the use of integral images are explained. Additional pre- and
postprocessing for this task are introduced and evaluated.

1 Introduction

In the last decades vehicle safety systems evolved from simple damage mini-
mizing and preventing tools to complex multimodal sensory systems recognizing
dangerous situations before they emerge. Many different sensors have been de-
veloped on particular parts of this tasks. One possibility of getting abstract
data is to analyse visual information of cameras aligned to the driving direc-
tion. Different methodes of computer vision can be used therefore. While in
many tasks better results could be achieved by combining other sensors with the
visual input, the task of detecting markings on a street surface could only be
solved by using visual information. Here a detector for zebra crossings, based
on the approaches of Viola and Jones, is introduced. The detector works on
grey-scaled pictures of 320 × 240 pixels recorded from a camera placed in front
of the rear-view mirror inside of the test vehicle. The images were recorded with
a sampling rate of 15 pictures per second.

2 Cascaded AdaBoost

Viola and Jones applied the AdaBoost-algorithm which was introduced by Fre-
und and Schapire [2, 3, 1] to train a single stages of their cascaded architecture.
AdaBoost is a meta algorithm that builds an ensemble of weak classifiers in order
to get a final strong classifier. After selecting one weak classifier, the training
examples get reweighted to intensify examples, which are not correctly classified
yet. Trained on the reweighted training set, the next weak learner will minimize
the error of the current ensemble. Viola and Jones restrict the weak classifiers
to classification functions, which depend on one single feature. In this way the
AdaBoost-algorithm produces a small set of features, which classifies the training
set quite well. The cascaded structure used by Viola and Jones [7, 4] combines
classifiers hi trained by the AdaBoost algorithm to the cascaded classifier c:

c(x) =
K∧

i=1

hi(x)
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In this context K is the resulting number of stages produced by the cascade’s
training. The great benefit of this structure comes from iterative evaluation of
the single classifiers hi. A sub-window, which was rejected at a certain stage,
must not be evaluated at higher stages. The benefit is a gain in terms of com-
putational time, because the most sub-windows will be rejected in early stages.
The expected number of weak classifiers N which have to be evaluated per sub-
window is reduced to

N = n1 +
K∑

i=2

⎛
⎝ni

∏
j<i

pj

⎞
⎠

where ni is the number of weak classifiers in the ith stage and pi it’s positive
rate. Viola and Jones describe the positive rate as ”...the propotion of windows
which are labelled as potentially containing the object of interest” [7].

3 Feature extraction and Variance Filtering

In their very first approach Viola and Jones [7] use a set of very simply rectan-
gular features influenced by the work of Papageorgiou [5] (Fig. 1). The sum of
pixels, which lies within the black area, gets simply subtracted from the pixels,
which lie in the white area. The resulting set consists of simply contrast-, edge-
and corner- detectors, which are specialized for horizontal and vertical struc-
tures. For our base resolution of 24 × 24 the set is composed of 162,332 single
rectangular features.

Fig. 1: Reactangular features used by Viola and Jones

In order to compute these features effictively an intermediate representation,
the so called integral image [7], was applied. Variance normalization brings a lot
of benefit to the classification task, e.g. images with low contrast will become
exhanced. Some problems appeared on the task of detecting single stripes of a
zebra crossing. In the street scenario there are a lot of other objects very similar
to single stripes. For example grooves in the lane could look like markings if
the sun shines from a particual position. Variance filters as used by Peters[6]
take care of this problem. Peters tests the standard deviation σ of a sub-window
against a treshold, and only if variance σ2 is greater than this treshold, the sub-
window will be scanned by the detector cascade. A small value for σ indicates a
low contrast within the sub-window. Using this method only sub-windows with
high contrasts are scanned. In our approach a bandpass filter implemented.
This additionally rejects sub-windows with too high contrasts. This method
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members gradient distance to regression line
zebra crossing ≥ 35 [−0.15;+0.15] ≤ 7 pixels

single line ≥ 20 ≥ |0.15| ≤ 2 pixels

Table 1: Group parameters

was chosen after some tests with the normal highpass. The single stripes of a
zebra crossing didn’t pass an additionally set treshold on their part. So sub-
windows with a too high contrast don’t show zebra crossings neither. In this
concrete setting only the middle part of an image, which shows the lane, is of
interest (Fig. 3(a)). A single stripe of a zebra crossing will never appear bigger
than 40 × 40 pixels. So bigger scales won’t be used neither. In this way the
number of sub-windows, which have to be scanned and analyzed, are reduced to
approximately 31,000 per image (for more details see [8]).

4 Grouping

Without some postprocessing the AdaBoost cascade showed a somewhat dif-
ferent behaviour than that which is known from tasks like face-recognition. A
cascade trained for face-recognition allways detects the presented face in more
than on sub-window. The single sub-windows are arranged concentric around
the real face. Each of this sub-windows shows approximately the entire face.
The cascade trained for single stripes not only reacts on whole stripes but also
on parts of them. The single sub-windows will therefore be ordered in a line.
The center points of the sub-windows will lie on the single stripes. In this appli-
cation a single hit was represented by a rectangle of 24× 36 pixels. On this way
a single stripe will be covered by small rectangels. The difference could be seen
on diagonal stripes. Here a representation of an hit through it’s sub-window
would include wide aeras, where no stripe could be seen. Two hits belong to
the same group, if their boundings overlap. A simple bounding box represents
the final group. The width of 36 pixels was chosen to create connections to
neighboured stripes. Now features had to be found to characterize those groups,
which really show a zebra crossing. Within some experiments three features had
been chosen: The number of hits within a group, the gradient of the regression
line through this points and the average distance between the points and the
regression line. The values mentioned here were chosen for pictures of 320× 240
pixels (Tab. 1). Once a zebra crossing was found, there must be 100 single hits
in the next picture, which lie in the boundings of the zebra crossing to prolong
the detection.

Scanning a whole zebra crossing the system will detect a group consisting of
some more or less parallel lines (Figure 2(a)). A regression line of this group will
therefore be quite horizontal. The average distance of the single points to the
regression line will overcome a certain minimum because of the stripe structure
within it.

Normally other groups don’t satisfy this requirements, but their characteris-
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(a) (b)

Fig. 2: Schematic Groupings of single hits : 2(a) grouping caused by a zebra
crossing, 2(b) grouping caused by a single line

(a) (b) (c)

Fig. 3: Examples for some different groups: 3(a) normal group, 3(b) group
declared as single strip, 3(c) some groups merged as zebra crossing

tics can be disturbed by some random single hits. On this way groups can be
declared to zebra crossings falsely. If for example some random single hits were
detected, attaching the left and right side of a group, the group’s regression line
will be flattened. In order to minimize such effects, it’s from benefit to declare
another group. In our task it is quite impossible to differ between the single
white stripes of a zebra crossing and other white lines on the lane. Therefore
a lot of false detections may be found on this lines. Even if the groups could
be distinguished from a zebra crossing, they are likely to be interpreted falsely.
Because of the large number of single detections on the line, only a few single
random detections are needed to achieve the 35 hits, which are needed to inter-
prete the group as a zebra crossing. Therefore if a group is labelled as a single
line (Figure 2(b)), its corresponding hits in the number of subsequent images
can be rejected.

Intuitively the gradient of a single line seems higher than bounds defined in
Table 1. The gradient bounds were chosen in this way because of curves. Once
a single line was found, single hits of the subsequent image were rejected, if
they lie less than ten pixels from the estimated regression line. The procedure
is repeated in the next three images. If more than thirty single hits are rejected
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highway city crossroad
false-positive-rate 0,27% 0,03% 0,19%

Table 2: false-positive-rates of the internal Viola-Jones-Cascade

highway city crossroad
rejected false detections 88,92% 14,78% 53,96%

Table 3: Rejection of single detection by single-line-groups

in this sequence, the procedure continues for further three images.
Sometimes parts on the outside of a zebra crossing build seperate groups.

Those of them were seperated, which were worthy recognizing them. If such a
group is found next to a detected zebra crossing, they will get merged to one
zebra crossing detection. A selected group has to contain 10 single detections, an
gradient lower than -0,15 or higher than 0,15 and the average distance between
regression line an hits had to be lower than 7 (See Fig. 3).

5 Results and Conclusion

Because it’s quite hard to find one set of representative samples, sequences of
standard situations were tested instead of. Three situations without any zebra
crossing were chosen: Driving on a highway, driving through the city and driving
on a crossroad. For each situation a sequence of 100 pictures was evaluated to
get results for the false-positive-rate (table 2) of internal Viola-Jones-Cascade.
The concept of the single-line-group was also tested in this way (table 3). The
fourth situation was crossing a zebra crossing. Therefore 75 Pictures had been
evaluated. Sensitivity and specifity of the internal Viola-Jones-Cascade were
computed for this situation(table 4). The whole grouping system was tested
in the situations driving on a highway, driving through the city and crossing
a zebra-crossing. The two first situations were therefore enlarged to 2700 and
2900 pictures (table 5).

The false-positive-rate differs from situation to situation. This is an effect,
which comes from the different environments. Whereas there are no white lines
at the city-situation, there are continuous white lines marking the border of the
lane at the highway-situation. Therefore much more single false detections could
be rejected in the highway-situation than in the city-situation.

The sensitifity and specifity evaluated at the zebra crossing situation show

zebra crossing
Sensifity 0,013

Specificity 0,999

Table 4: Sensifity and Specificity
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highway city zebra crossing
containing zebra crossing groups 0,3% 0,21% 97,33%

Table 5: Percentage of pictures containing zebra crossing groups

that only a small part of sub-windows, which show a single white stripe, is
recognized as it. But most of the sub-windows, which don’t show a single white
stripe were classified correctly. The correctly detected sub-windows are sufficient
to detect 97, 33% of the zerba crossings in the test set. In 0, 3% of all pictures
of the highway situation a zebra crossing was detected. In the city test set only
0, 21% were labelled incorrectly.

A zebra crossing detector based on the approach of Viola and Jones was
introduced. It was shown how a variance filter could be used to reduce the time
needed to scan a single picture. The internal cascade was trained to detect the
single stripes of a zebra crossing. This caused high false positiv rates, because
other white lines on the lane couldn’t be distinguished from them. This problem
was solved by grouping the single sub-windows in postprocessing. Therefore
some characteristics for a zebra crossing group and a single line group were
introduced. The single line group could reject up to 88,92% of all false positives
detected by the internal cascade.
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