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Abstract.

This paper presents learning simulation results on a balanced recurrent

neural network of spiking neurons with a simple implementation of the

STDP plasticity rule, whose potentiation and depression e�ects compen-

sate. The synaptic weights and delays are randomly set and the network

activity, which is a combination of an input signal and a recurrent feedback,

is initially strong and irregular. Under a static stimulation, the learning

process shapes the initial activity toward a more regular and synchronous

response. The response is speci�c to this particular stimulus: the network

has learned to select by synchrony one arbitrary stimulus from a set of

random static stimuli.

1 Introduction: the STDP framework

Biological evidence of long-term plasticity [1], where a synapse is potentiated
when the presynaptic neuron �res shortly before the postsynaptic one and de-
pressed in the opposite case in a nearly anti-symmetrical way[2, 3, 4] gave rise to
the Spike-Timing Dependent Plasticity (STDP) rule, which has inspired various
studies these last years. An important e�ect of STDP is that it reduces the
latency of a neuron's response to a given input [5, 6]; the behaviour of STDP
has also been studied on larger, recurrent networks, but the results are more
ambiguous: while it has been shown that in some conditions it can lead to the
emergence of neuronal groups[7, 8], these results seem to depend on the precise
implementation, since a slightly di�erent rule on a di�erent neuron model gives
di�erent results: there is no structure development, strong synapses remaining
unstable[9].

We present here a series of simulations where connection strength between
neurons is modi�ed by a simple implementation of STDP. We show that in our
model, such a learning process allows to distinguish by synchrony an arbitrary
stimulus from a set of static stimuli associated to strong and irregular self-driving
activity. The section 2 presents our model (an integrate-and-�re neural network
model under the in�uence of static stimuli). The sections 3 and 4 illustrate how
a particular stimulus may be learned from a set of arbitrary stimuli.
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2 Model: heterogeneous weights and delays

The neural networks we simulate are random and recurrent, implemented with
discrete leaky integrate-and-�re neurons1. The individual weights and delays are
independent and strongly heterogeneous 2. The synaptic weights are set accord-

ing to a Gaussian draw N
(
µJ

N ,
σ2

J

N

)
, while the axonal transmission delays are

set according to a Poisson draw of expected value λτ = 10 ms. The simulations
take place on rather small neural networks composed of N = 100 neurons (but
could be extended with the same global parameters to larger sizes).

The inputs sent to the network are distributed among every neuron. We
de�ne a set of P static stimuli (I(p))p=1..P which are random vectors of size N
and whose values are randomly set according to a gaussian draw N (0, σ2

I ) where
σI = 13.

The activity of such networks when fed with a stimulus looks very irregu-
lar at �rst glance. First, the asynchrony of the activity directly results from
the balance between the excitatory and inhibitory in�uences [11]. Second, the
irregularity of the activity is a well-known feature of recurrent heterogeneous
networks [12, 13]. In order to characterise this irregularity, we use an estimation
of the e�ective number of Degrees of Freedom (#DOF) based on a Principal
Components Analysis4 [14, 15].

1Consider a set of neurons labelled by indexes i ∈ {1, ..., N}. The neuron activity {Si(s)}s<t
is de�ned as a sum of Diracs corresponding to the series of spikes emitted up to the t instant
(see [10]). Taking into account the absolute refractory period τr, the �ring threshold θ and
the external signal Ii(t), the current activity Si(t) is de�ned the following way:

if max
s∈[t−τr,t[

(Si(s)) = 0 and Vi(t) ≥ θ − Ii(t) then Si(t) = δ(0) else Si(t) = 0

where δ(0) is a Dirac impulse and Vi(t) is the neuron's membrane potential, de�ned according
to the Leaky Integrate-and-Fire (LIF) di�erential scheme:

dVi

dt
= −

Vi(t)− V0

τm
− Si(t)(Vi(t)− VS) +

NX
j=1

JijSj(t− τij)

where V0 is the resting potential, VS is the refractory potential, τij and Jij are respectively
the transmission delay and synaptic weight from neuron j to neuron i and τm is the membrane
time constant. We set τr = 2 ms, τm = 10 ms, V0 = 0, VS = 0 and θ = 1. In the simulations,
we use a simple �rst order integration with resolution δt = 1 ms.

2Our parameters are chosen in order to allow the internal self-sustained activity to compete
with the external stimulation. The expected value of the weights sum is µJ = 0 so that the
excitatory in�uences compensate the inhibitory ones (balanced networks con�guration). The
weights sum standard deviation is σJ = 2. This value corresponds to a strong internal in�uence
(which is typically the case when the weights sum overtakes the threshold � here θ = 1).

3Each stimulus is presented to the network for a duration which is greater than the mixing
time of the system in order to converge to a stationary response.

4Our data set is composed of the membrane potentials of all the neurons over sliding win-
dows of 100 ms. A Principal Components Analysis is �rst applied to the data set, followed by
a calculation of the entropy of the normalised principal values pi of the transformation matrix:
S = −ΣNi=1piln(pi). This value is considered as an approximate log count of signi�cant prin-

cipal components weighted by their respective size, so that #DOF = eS is an approximation
of the e�ective number of degrees of freedom.
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3 Weight adaptation: emergence of synchrony

Several implementations of the STDP update mechanism have been proposed
in the literature. Our implementation is all-to-all [16] and additive: the weight
update depends on every previous synaptic event (the in�uence of the less recent
events fading with time) and doesn't take into account the current weight of the
synapse. Concretely:

dJij(t)
dt

= α [Si(t)εj(t− τij)− εi(t)Sj(t− τij)]

where the trace τm
dεi

dt = −εi + Si(t) can be considered as a short-term esti-
mation of the �ring rate of the ith neuron. This update scheme divides in two
terms. The �rst term corresponds to the synaptic potentiation: a signi�cant
weight increment takes place when a post-synaptic spike is associated with a
strong pre-synaptic trace (recent pre-synaptic excitations). The second term
corresponds to the synaptic depression: the weight signi�cantly decreases when
a pre-synaptic pulse is associated with a strong post-synaptic trace (i.e. after
post-synaptic excitation). The result is a global facilitation of pre-post sequences
of excitation and a depression of post-pre sequences of excitation. This rule is
strictly antisymmetrical, i.e. the potentiation compensates the depression, so
it can be considered as �balanced�. From a computational point of view, the
storage of a trace is not very expensive. It is moreover strictly local and as such
biologically implementable.

In a �rst simulation, the learning process lasts between t = 5 s and t = 25 s on
a network under a static input. The value of the learning parameter is α = 0.005.
We present in �gure 1 some aspects of the activity evolution during the learning
process. Figure 1A presents a sliding autocovariogram of the average membrane
potential. It o�ers a synthetic view of the ongoing transformation taking place
in the activity. Figure 1C shows a raster plot of the activity on the time window
between 5 s and 15 s, which corresponds to the core of learning.

The initial activity is rather unstructured and irregular; when submitted to
STDP it becomes simpler, which is testi�ed by a decrease in the #DOF mea-
sure (see �gure 1B). The activity eventually becomes periodic and synchronised,
which manifests in the form of a series of red stripes in the autocovariogram
and is also directly visible on the activity plot. The transition from irregular
activity to synchrony isn't necessarily straightforward: there is a period (around
t = 10 s) where the two regimes �coexist�, causing multiple transitions and an
occasional burst of complexity.

4 Speci�city of the learned response

We address here the question of input selectivity after learning. Is the network
response speci�c to the learned stimulus or would it respond in the same way to
other stimuli? We tested the network response to 4 arbitrary stimuli before and
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Fig. 1: - A - Evolution of the autocovariance of the average membrane potential
during the learning process. At each time step t, the signal V̄ (t) is covaried with
V̄ (t + τ) for τ in 0..200 ms, V̄ being the average of all neurons' membrane
potentials. The red zones denotes a high covariance while the deep blue zones
denote low covariance values. - B - Evolution of the #DOF measure across
learning - C - Activity of the network in the �rst 10s of STDP.

after learning5. Before this learning session, all the stimuli trigger a response
with the similar complexity. After learning, the pattern of activity for the �rst
stimulus is signi�cantly simpli�ed, making it dissociable from the other patterns
of activity. We tested the reproducibility of this experiment: the same simulation
on 10 di�erent networks6 gives a similar reduction of the #DOF measure (see
�gure 2).

In the given learning con�guration (strong learning coe�cient, short learning
process), the response remains speci�c to the learned stimulus. We also veri�ed
that such a periodic shaping is systematically observed for other parameter con-
�gurations, but the activity simpli�cation is not always synchronous. Moreover,

5In order to do so, the 4 di�erent stimuli are presented sequentially on 1 second each. STDP
is applied with a strong learning coe�cient (α = 0.05) on a short period of time (500 ms �
between 12.5 s and 13 s) where only the stimulus #1 is presented.

6Identical parameters, but di�erent initial random settings for the weights, delays and
inputs.
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Fig. 2: Mean and variability over ten networks of the e�ective degrees of freedom
for a similar sequential presentation of the four stimuli. - A - Before learning
(0 < t < 4 s). - B - After learning the �rst stimulus (20 s < t < 24 s).

such a learning process relies on a �ne tuning of both the learning coe�cient
value and the learning session duration. Some complexity decrease for the other
stimuli, which is visible on the mean #DOF, may be ampli�ed if the learning
session lasts too long or if the learning parameter is too strong. A systematic
study of our system's loading capacity is thus to be done, in order to estimate
to the best how many di�erent stimuli can be learned in the same way.

5 Discussion: which input selection in biological networks?

We have presented a neuronal model of perception which encompasses the ef-
fects of recurrent self-feeding activity7 and a simple, biologically-implementable,
STDP mechanism which allows to learn to di�erentiate by phase transition one
stimulus out of a set of several statistically equivalent stimuli. The learned stim-
ulus is found to drive a regular and synchronous pattern of activity while the
response remains unstructured for the other stimuli. While the synchronisation
e�ect of STDP appears in other works [8, 9], albeit in di�erent circumstances,
its dependence to a particular stimulus is to our knowledge unheard of.

This study emphasises the role of qualitative transitions rather than mean
activity changes, and may be considered as complementary to the classical feed-
forward input selectivity mechanisms. It is highly probable that several extrac-
tion mechanisms combinate in the real brain to produce appropriate responses.
For instance, the presence of both synchronous activity and STDP may help
to propagate the sensory signal to deeper layers by a synchrony consolidation
e�ect, as proposed for instance for the olfactory bulb by [17, 18].

Some questions remain at the present stage, concerning an estimation of the
loading capacity in multiple stimuli learning or the possible extensions of this
learning scheme to dynamical/temporal input signals. This study would also

7Our recurrent neural networks can be seen as non-autonomous dynamical systems which
undergo perturbations from the external world. The interesting regimes lie in the domain
where the incoming signal is in concurrence with the internal self-sustained signal.
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bene�t a comparison with real data, in particular in the olfactory [17] or motor
[19] systems.
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