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Abstract. This work advances the Support Vector Machine (SVM)
based approach for predictive modelling of failure time data as proposed
in [1]. The main results concern a drastic reduction in computation time,
an improved criterion for model selection, and the use of additive models
for improved interpretability in this context. Particular attention is given
towards the influence of right-censoring in the methods. The approach is
illustrated on a case-study in prostate cancer.

1 Introduction

Survival analysis models the time until the event under study occurs. Censored
data are a particular problem in these studies. Censoring occurs when the exact
response is unknown. There are three types of censoring: for right censored
data it is only known that the event did not occur before a certain time, for
left censored data the event occurred before a certain time and interval censored
data have a right as well as a left censoring time. Within this work we will
concentrate on right censored data.

Traditional statistical survival techniques as Cox’ proportional hazard model
or the accelerated failure time model focus on explicitly modelling the underlying
probabilistic mechanism of the phenomenon under study [2]. The main focus
of machine learning techniques is merely to learn a predictive rule which will
generalize well to unseen data [3].

Amongst other applications, SVMs have also been used for prognostic reasons
by reformulating the survival problem as a classification problem, dividing the
time axis in predefined intervals or classes [4], and as a rank regression problem
in our previous work [1]. The algorithm proposed in the latter optimizes the
concordance index between observed event times and estimated ranks of event
occurrence. The relation between the concordance index and the area under the
ROC curve permits the translation of advances in machine learning in a context
of ordinal regression, ranking and information retrieval [5, 6].

In the present work we propose a practical alternative for the computation-
ally demanding algorithm in [1]. Optimization of the concordance index implies
the comparison of all data pairs in response and time domain. The number of
comparisons is reduced by selecting appropriate pairs, resulting in a significant
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decrease of calculation time without notable loss of performance. Special at-
tention is drawn towards the importance of the censoring mechanism on tuning
algorithm and performance.

This paper is organized as follows. Section 2 describes the modification
of support vector machines for survival data and illustrates the reduction of
computational load. Section 3 summarizes results on artificial and cancer data.

2 Support Vector Machines for Survival Data

Throughout the paper the following notations are used for vectors and matrices:
a lower case will denote a vector or a scalar (clear from context), an upper case
will denote a matrix. The covariates xi for each subject i = 1, . . . , N can be
organized in a matrix X ∈ R

d×N with Xi = xi. The failure times {t}N
i=1 are

organized in a vector t ∈ R
N×1. IN indicates the identity matrix of size N .

Concordance Index

The concordance index (c-index) [7] is a measure of association between the
predicted and observed failures in case of right censored data. The c-index
equals the ratio of concordant to comparable pairs of data points. Two samples
i and j are comparable if ti < tj and δi = 1, with δ a censoring variable equal
to 1 for an observed event and 0 in case of censoring. A pair of samples i
and j is concordant if they are comparable and u(xi) < u(xj), with u(x) the
predicted value corresponding to the sample x. Formally, the sample based c-
index of a model generating predictions u(xi) for samples xi from a dataset
D = {(xi, ti, δi)}N

i=1 can be expressed as

CIN (u) =
1

N(N − 1)

∑
i�=j

I[(u(xi) − u(xj))(t(xi) − t(xj))] , (1)

where I[z] = 1 if z > 0, and zero otherwise.

Pairwise Maximal Margin Machine

A learning strategy would try to find a mapping u : R
d → R which reconstructs

the orders in the observed failure times measured by the corresponding CIN . In
order to overcome the combinatorial hardness which would result from directly
optimizing over CIN , [1] proposed to optimize a convex relaxation.

Minimization of this upper bound results in an optimized empirical c-index.
The optimal health function u(xi) = wT ϕ(xi) : R

d → R can then be found as

(ŵ, ξ̂) = arg min
w,ξ

1
2
wT w + C

∑
i<j,δi=1

vijξij

s.t.

{
wT ϕ(xj) − wT ϕ(xi) ≥ 1 − ξij

ξij ≥ 0, ∀ i, j = 1, · · · , N
(2)
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with C a positive real constant and vij = 1 if the pair (xi, xj) is comparable, 0
otherwise; ϕ : R

d → R
dϕ is a feature map such that K(x, x′) = ϕ(x)T ϕ(x′) is a

positive definite kernel function K : R
d × R

d → R. Taking the Lagrangian

L(w, ξ;α, β) =
1
2
wT w + C

∑
i<j

vijξij −
∑
i<j

βijξij

−
∑
i<j

αij(wT ϕ(xj) − wT ϕ(xi) − 1 + ξij) (3)

with multipliers α, β ∈ R
N
+ leads to the optimality conditions{
w =

∑
i<j αij(ϕ(xj) − ϕ(xi))

Cvij = αij + βij , ∀ i < j .
(4)

The dual problem is obtained as

min
α

1
2

∑
i<j

∑
k<l

αijαkl(ϕ(xj) − ϕ(xi))T (ϕ(xl) − ϕ(xk)) −
∑
i<j

αij

s.t. 0 ≤ αij ≤ Cvij , ∀ i < j (5)

The estimated health function can be evaluated on a new point x∗ as û(x∗) =∑
i<j αij(K(xj , x

∗) − K(xi, x
∗)) .

A major drawback of this algorithm is the large computational cost, making
the method unapplicable for larger datasets. In the next section an approach to
reduce the prohibitive computational cost is proposed.

A Scalable Nearest Neighbor Algorithm

The above method can be adapted to reduce computational load without consid-
erable loss of performance. To find an optimal health function u(x), O(qN2/2)
comparisons between time and health values are required, with q and N the
percentage of non-censored and total number of samples in the training dataset
respectively. The calculation time can be largely reduced by selecting a set Ci of
k samples with a survival time nearest to the survival time of sample i (k-nearest
neighbor (k-NN) algorithm):

Ci = {(i, j) : tj is k − nearest to ti}, ∀ i = 1, . . . , N , (6)

decreasing the number of comparisons to O(qkN).
The effect of the number of neighbors in the training algorithm is illustrated

in Figure 1. For a linear function (Figure 1(a)) the value of k in the k-NN
algorithm has no influence on the performance. Therefore a very small number
of neighbors suffices. For a non linear function the value of k accounts for a
trade-off between computational load and performance. However, performance
no longer increases above a certain value of k.
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(a) y1 = x + white gaussian noise
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(b) y2 = sinc(x) + white gaussian noise

Figure 1: Performance on 100 testsets (N=100) depending on k and the censoring
percentage. For a non-linear function the performance saturates for k = 10.

Model Selection Schemes

High censoring rates as common in applications urge for special care in the model
selection stage, as the implied increased variance can deteriorate performance.
We shortly discuss three model selection schemes in the context of censored data.
The first scheme uses a single validation set of size N/2, with N the number of
training samples. The second criterion randomizes this scheme a number of
times, such that one has in each iteration a disjunct training - test set. The
classical 10-fold cross-validation (CV) criterion - the third scheme - imposes that
the validation sets of size N/10 are disjunct over the folds.

The use if these schemes is illustrated on a small example. An artificial
dataset with y = sinc(x)+noise (normally distributed) was created. Figure 2
shows that for a dataset with 30% of censoring, CV has a much wider spread in
concordance. The second method performs best. When 90% of data are censored
the c-index on the validation sets ranges from 0 to 1 for tuning via CV. This is
explained by the very low number of events in a set of only N/10 samples. As
a consequence there is no guarantee on the generalization performances of this
model. Since the first method is dependent on the partition between training
and validation samples, the results on the test set are disappointing. The second
tuning algorithm forms a compromise, resulting in a better generalization ability.
However, performance on high censored data are uncertain.

3 Case Study in Prostate Cancer

The performance of the k-NN based variation of the survival-SVM model was
compared with the Cox proportional hazard model on the prostate cancer dataset
of Byar and Green [8] (http://lib.stat.cmu.edu/S/Harrell/data/descriptions/
prostate.html). The variables age, weight index, performance rating, history
of cardiovascular disease, serum haemoglobin and Glesan stage/grade category
were included in the analysis. From the 483 patients with complete observations
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Figure 2: Concordance depending on tuning algorithm and censoring percentage
q. The k-NN with k=10 is used. (a)-(b): left: single validation set; middle: 10
validation sets; right: 10-fold cross-validation; top: q=30%; bottom: q=60%.
Repeated permutation has better generalization characteristics.

125 died of prostatic cancer. A Cox proportional hazard model trained on two
third of the data resulted in a concordance index of 0.7635 on the test set (re-
maining data). A nearest neighbor survival SVM model with a linear kernel and
five neighbors results in a concordance index of 0.7641. The same performance
is obtained using a polynomial kernel with only three neighbors. Given that the
time needed in the training phase is much higher for the latter (177.46 versus 6.08
seconds) it is preferred to use a linear kernel with more comparisons. The Cox
model trains much faster: 0.024 seconds. Using all possible pairs our method
obtains a concordance index of 0.7728, but training required 1778 seconds.

Additive models were used to improve interpretability. The relation between
response and covariate xd can be modelled as

u(X) = ud(xd) + u−d(x−d) = wT
d ϕd(xd) + wT

−dϕ(x−d) , (7)

where ud(xd) is the contribution to the model outcome of the dth covariate,
modelled by a non-linear function and u−d(x−d) the contribution of all other
covariates, modelled in a linear way. Figure 3 illustrates this principle. The
model predicts a difference in survival behavior for the stage/grade index below
or above 10 (Figure 3(a)). Kaplan-Meier curves, showing a significant different
observed survival in these strata, confirm this finding. The model suggests no
relation between weight index and survival. The Kaplan-Meier curves stratified
for three weight groups shows no significant difference in observed survival. An
increasing tumor size results in decreasing estimated and observed survival.

4 Conclusions

This paper discussed the SVM for survival data as proposed in [1], and copes
with issues in computational tractability, model selection and interpretability.

93



5 6 7 8 9 10 11 12 13 14 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Index
stage−hist

u In
de

x st
ag

e−
hi

st

60 70 80 90 100 110 120 130 140
−4

−3.5

−3

−2.5

−2

−1.5

−1

Index
weight

u In
de

x w
ei

gh
t

0 10 20 30 40 50 60 70
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

size

u si
ze

0 10 20 30 40 50 60 70 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

su
rv

iv
al

 p
ro

ba
bi

lit
y

 

 

Index
stage−grade

<10

Index
stage−grade

>=10

(a) stage/grade index
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Figure 3: Illustration of the use of additive models for three covariates. Top: Es-
timated relation between covariates and survival. Bottom: Kaplan-Meier curves.
Conclusions drawn from the model are confirmed by the observations.

As such, the approach is made practical for real world datasets as described in
case of a retrospective prostate cancer dataset.
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