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Abstract.

We investigate the effect of several adaptive metrics in the context of
figure-ground segregation, using Generalized LVQ to train a classifier for
image regions. Extending the Euclidean metrics towards local matrices
of relevance-factors does not only lead to a higher classification accuracy
and increased robustness on heterogeneous/noisy data, but also figure-
ground segregation using this adaptive metrics enables a considerably
higher recognition performance on segmented objects of real image data.

1 Introduction

Segregating a currently attended object from the surrounding background is
fundamental for research on object learning, recognition, and interaction under
general environment conditions (Fig. 1). If one cannot rely on foreground de-
tection, an initial hypothesis about the object can be derived, for example, from
depth estimation [1], information available from saliency-maps [2], or top-down
information about object parts [3]. The problem is to extract the relevant ob-
ject regions from such imprecise hypotheses for further processing. The Adaptive
Scene-Dependent Filter (ASDF) [4] addresses the problem by over-segmenting
the image into homogeneous regions and selecting the segments which match
the hypothesis. Extending the ASDF by stating figure-ground segregation as a
binary classification problem, we use Generalized Learning Vector Quantization
(GLVQ [5]) to adapt a prototype-based classifier for figure and ground. When
using a prototype-based representation, clustering and classifying image regions
on the basis of similarity crucially depends on the underlying metrics. For GLVQ
several extensions of the Euclidean metrics are available [6, 7] which offer addi-
tional feature and prototype-specific weighting factors, taking into account fea-
ture discriminability and correlations between them. Those so-called relevance-
factors are online adapted with gradient descent together with the LVQ-network
weights. By comparing the adaptive metrics, we show that the introduction of
prototype-specific matrices of relevance-factors is capable of achieving a large
gain in segmentation quality enhancing object learning and recognition. Com-
pared to the ASDF, this method offers the advantage to automatically determine
the best discriminating feature dimensions for object segmentation, and addi-
tionally relaxes a priori assumptions on object position and segment selection.
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2 Method

Our current scenario for object learning consists

Figure 1: General setup
showing the peripersonal
space for object learning [8].

of a person presenting objects to a stereo-camera
system. The pan-tilt stereo-camera head is con-
trolled by a three-layered attention system to en-
able unconstrained learning. To localize, track and
centre the object in view (translation invariance),
the concept of peripersonal space is used [8], which
defines the behaviourally relevant parts of the scene
(bounding box in Fig. 1). From the blob-detection
in the peripersonal space a square region of inter-
est is defined (ROI) and normalized to a size of
144× 144 pixels (size invariance). The depth infor-

mation within this ROI is used as an initial object hypothesis H.
Problem: Extracting 3D information from 2D images in general is an ill-posed
problem, resulting in solutions with coarse approximations of the object by the
depth estimation. Therefore, extracting the relevant object parts from this hy-
pothesis is complicated by partially overlapping feature-clusters due to the noisy
character of the hypothesis itself, as well as similar colors in regions of figure and
ground. Formally the input data consist of M feature maps F := {Fi|i = 1..M}
and here we use 6 feature-maps selected from RGB, HSV image and pixel posi-
tion (F x,y

1 = Rx,y, F x,y
2 = Gx,y, F x,y

3 = Bx,y, F x,y
4 = V x,y, F x,y

5 = x, F x,y
6 = y).

The stack of maps is represented by a set of vectors �ξx,y ∈ R
M , 1 ≤ x, y ≤ 144.

We assume an unknown ground truth map G, which defines for every pixel (x, y)
the membership of �ξx,y to figure Gx,y = 1 or ground Gx,y = 0 with respect to
the attended object. The goal is to approximate G by another binary map A
using the initial hypothesis H (also a binary map) and the similarity-information
provided from the feature-maps F . Finally the overlap with the real segmenta-
tion (see Fig. 2) must be increased G(A) > G(H), measured by the similarity
function G(·) which is the ratio of intersection and union of G and A

G(A) := 1−
∑

x,y |Ax,y − Gx,y|∑
x,y Ax,y +

∑
x,y Gx,y

, Hx,y,Ax,y,Gx,y =

{
1 for foreground

0 for background

Adaptive Scene-Dependent Filter: For the ASDF, H are the non skin-
coloured areas (filtered in a separate processing stream for skin color detection)
from a superposition of the depth-map with a position and size prior (circular
map [4]). To build A and to extract the relevant object parts from F using
H, the current ASDF implementation basically consists of two steps (see [4]
for details). After pre-processing the feature maps F x,y

i ← fi · (F x,y
i /σ2

i ) by
scaling with their variance 1/σ2

i and a feature-specific a priori weighting factor
fi, a vector quantization is performed to segment the image. A modified K-
means clustering is used to approximate the clusters in the data (homogeneous
regions in the image) by a fixed set of N prototypes P :=

{
�wp ∈ R

M |p = 1..N
}
.
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After adapting the prototypes with Hebbian learning while randomly choosing
samples �ξx,y, the image is partitioned into N segments (binary maps) Vp by
assigning all feature vectors �ξx,y (i.e. pixels) independently, to the prototype
whose weight-vector has the smallest Euclidean distance d(�ξ, �w) = ‖�ξ− �w‖ to �ξ.

V x,y
p :=

{
1 if d(�ξx,y, �wp) < d(�ξx,y, �wr),∀r �= p, {r, p} ∈ P,

0 else.

Finally, A =
∑N

p Vp is constructed heuristically by using a subset of activation
maps Vp, each of which shows a sufficient overlap with the initial hypothesis H.
Additionally, a temporal integration by reusing the old prototypes to initialize
the network on the following image increases stability and compensates a reduced
number of adaptation steps.

2.1 Generalized Learning Vector Quantization with Relevance-factors

Alternatively to unsupervised clustering one can state the task of object ex-
traction as a binary classification problem and use learning (i.e. supervised)
vector quantization to adapt class-specific prototypes. In both cases similarity-
based clustering and classification crucially depends on the underlying metrics.
Extending the Euclidean metrics used by ASDF and Generalized LVQ (GLVQ
[5]) by introducing a relevance-factor for each feature dimension (Generalized
Relevance LVQ (GRLVQ) [6]) leads to the squared weighted Euclidean metrics
‖�ξ − �w‖2λ =

∑M
i λi(ξi − wi)2, where λi ≥ 0 and

∑M
i=1 λi = 1. The effect is

an axes-parallel scaling of the data according to the best discriminating feature
dimensions, yielding to an ellipsoidal shape of a set of points equidistant to a pro-
totype. This concept, further extended to an M ×M matrix of relevance-factors
(Generalized Matrix LVQ, GMLVQ [7]) yields d(�ξ, �w) = (�ξ − �wp)T Λ(�ξ − �wp),
where Λ is positive (semi-)definite and

∑M
i=1 Λi,i = 1. Hence the distance

computation is shaped to a rotated ellipsoidal by accounting for correlations
of the feature dimensions in the second diagonal elements of Λ. Both adap-
tive metrics enable non-linear decision boundaries by an extension to local
relevance-vectors/matrices λp, Λp specific for every prototype, called localized
GMLVQ/GRLVQ (LGMLVQ/LGRLVQ). Using stochastic gradient descent (in-
troduced by GLVQ), the prototypes �wp of the network as well as the relevance-
factors λ are updated by the derivatives ∂E/∂w and ∂E/∂λ of the classification
error E =

∑
�ξx,y f((dJ − dK)/(dJ + dK)), f(x) = (1 + exp(−x))−1. E must be

minimized on the training data while maximizing the margin dK − dJ , where
dJ is the distance between �ξx,y and the most similar prototype from the correct
class c(�ξx,y) = c(�wJ ) and dK is the distance to the most similar prototype from a
wrong class. For figure-ground segregation a setup with two classes C = 2 is used
where c(�wp) ∈ {0..C − 1} encodes the class-membership of every weight/feature
vector to figure or ground. Using similarity-based classification to compute the
activation maps Vp as before, the final mask A is combined by choosing the maps
from prototypes assigned to the foreground A =

∑N
p c(�wp)Vp, c(·) ∈ {0, 1}.
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3 Evaluation of segmentation quality

Figure 2: Example for artificial distortion of the ground truth data. From left
to right the original image, ground truth G, distorted hypothesis H (patchsize
s1 = 12, shift s2 = 22) and resulting segmentation A.

The first evaluation of GLVQ using different metricsMethod G(A)
GLVQ 0.09
GRLVQ 0.43
GMLVQ 0.50
LGRLVQ 0.60
LGMLVQ 0.92

Table 1: Average Simi-
larity of foreground clas-
sification A to ground
truth G, where H = G.

addresses the capability of foreground classification on
the non-preprocessed feature-maps using the (noisy)
H as supervised information. Therefore a database
of rendered image sequences from 25 3D objects (bot-
tles, boxes, cars etc.) is used. The arbitrarily rotated
object-views are pasted in the centre of a typical scene
(human in the background, hand near object), gen-
erated by tracking the view-centred hand in front of
the camera systems. The available ground truth mem-
bership G of pixels to the foreground is used to gen-
erate artificial hypothesis maps H (Figure 2) by ran-

domly selecting and shifting a patch from one position in the image to an-
other (patch size s1, shift distance s2). The resulting foreground classification
masks A are compared to the ground truth data using G(A). In all experiments
M=20 randomly initialized prototypes are used (6 figure, 14 ground) adapted
by 10000 training-steps for each image with a learning-rate of 0.05/0.005 for the
prototypes/relevance-factors.

We show in Table 1 the results for s1,2 G(H) G(A) G(A∗)
0 0 1 0.92 0.95
8 8 0.90 0.84 0.87
10 16 0.78 0.76 0.79
12 22 0.69 0.73 0.77
12 30 0.62 0.73 0.77
14 38 0.54 0.74 0.78

Table 2: Average similarity to ground
truth G of initial hypothesis H and re-
sults of LGMLVQ without (G(A)) and
with post-processing (G(A∗)).

using the ground truth data G for su-
pervised training, averaged over 700 im-
ages per object. Increasing complexity
of the adaptive metrics from relevance-
vectors to matrices and from global to
local ones, which was the only modified
parameter in this experiment, clearly leads
to an increasing segmentation quality.
Measured by the overlap G, which con-
siders only foreground-pixels, the result-
ing foreground mask reach an average
similarity to the ground truth data up
to 92% for LGMLVQ. Note that, although G(A) can be very small, nevertheless
the overall pixel classification performance is much better, e.g., 87% for GLVQ
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and 98% for LGMLVQ, taking the background pixels into account. On the basis
of results of Table 1, we further introduce additional noise to the training signal
by using multiple degrees of distortions of G for supervised training of LGMLVQ
(Tab. 2). This noise, as well as similar colors in foreground and background
are responsible for overlapping clusters in feature-space. This problem cannot
be solved, but the non-linear decision boundaries introduced by local trans-
formations, as well as the even higher flexibility by using multiple prototypes
for each class, allow a better representation of the heterogeneously structured
data. Because of classification errors introduced by the method itself some rea-
sonable distortion is required to observe the beneficial effect for our scenario
(G(A) > G(H)). But in this case, the higher model complexity enables a higher
robustness to this distortion. Applying a closing operation (A∗) to the more or
less noisy A, further improves results for succeeding processing.

4 Evaluation of recognition performance

Finally we have to evaluate the capabilities of this approach on real image data
and to investigate the effort of the derived object segmentations in the context
of online object learning and recognition. Here we are using the data from [8]
consisting of 50 natural, view centred objects with 300 training and 100 testing
images without ground truth information. From the available depth and skin
information the hypothesis H is computed, without additional prior information
on object position (as used in [4], see Section 2). To compare the results of the
different methods, the image regions defined by the foreground classification (i.e.
the presented objects) are fed into a hierarchical feature processing stage [8]. For
object learning and recognition a separate nearest neighbour classifier is applied
to the derived high dimensional shape features. Figure 3 shows samples for A
and the recognition performance from using the depth-map itself, hypothesis H,
the ASDF (used from [8]), and the results of the compared GLVQ-extensions.
Despite of the the noisy data LGMLVQ is capable to represent (generalize) fig-
ure and ground on the basis of the best discriminating features, which enables
a correct classification of the main object parts. Therefore using foreground
classifications of LGMLVQ causes a significant improvement in recognition per-
formance on real world data, whereas still running at reasonable time for online
learning of 4 Frames/sec on a 3.6 GHz Intel Xeon processor machine.

5 Conclusion

In this paper we have compared several metrics extensions applied to GLVQ
and finally adopt LGMLVQ in the domain of figure-ground segregation. In com-
parison to other metrics, we have shown that the extension to local matrices of
relevance vectors leads to improved foreground classification resulting in a signif-
icant enhancement of object learning and recognition. Compared to the ASDF
approach, which also directly addresses the foreground segmentation from an
initial hypothesis, the supervised learning does not rely on additional a priori
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assumptions about object position, size and segment-selection. From the view-
point of supervised learning where the goal is a correct (pixel) classification, the
incomplete approximation of H by A seems not desired. Here we use the advan-
tage of GLVQ as large margin classifier, which accepts a small number of false
classifications for more confident/robust decision boundaries, enabling a higher
generalization to the underlying structures (e.g. object parts) in the image data.

Object Depth H ASDF GLVQ GRLVQ GMLVQ LGRLVQ LGMLVQ

Rec. Perf.: 73.5% 75.5% 77.8% 23.6% 31.6% 64.2% 68.7% 88.8%

Figure 3: From left to right: input image, depth-map, hypothesis H and derived
A using GLVQ with Euclidian and adaptive metrics. Bottom row, the recog-
nition performance of a separate nearest neighbour classifier on the segmented
object images (300 images for training, 100 for testing). Observable is a gradual
increase of segmentation quality and performance from taking into account cor-
relations of the features as well as the usage of local transformation rather than
global ones.
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