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Abstract. A mathematical quantisation of a Random Access Memory (RAM) is
proposed starting from its matrix representation. This quantum RAM (q-RAM) is
employed as the neural unit of q-RAM-based Neural Networks, q-RbNN, which
can be seen as the quantisation of the corresponding RAM-based ones. The models
proposed here are direct realisable in quantum circuits, have a natural adaptation
of the classical learning algorithms and physical feasibility of quantum learning in
contrast to what has been proposed in the literature.

1 Quantum computation and Mathematical Quantisation

Quantum computing [14] was originally proposed by Richard Feynman [7] in the 1980s
and had its formalisation with David Deutsch which proposed the quantum Turing
machine [4]. Quantum Computing has been popularised through the quantum circuit
model [5] which is a quantisation [15] of the classical boolean circuit model of com-
putation. Quantum computer also became a potential parallel device for improving the
computational efficiency of neural networks [6].

The quantum information unit is the quantum bit or ”qubit”. A very intuitive view
of the quantisation procedure is put forward by Nik Weaver in the Preface of his book
Mathematical Quantization [15] with just a phrase which says it all: ”The fundamental
idea of mathematical quantisation is sets are replaced with Hilbert spaces”.

The quantisation of the boolean circuit logic starts by simply embedding the the
classical bits {0, 1} in a convenient Hilbert space. The natural way of doing this is to
represent them as (orthonormal) basis of a Complex Hilbert space. In this context these
basis elements are called the computational-basis states.Linear combinations (from Lin-
ear Algebra [9]) of the basis spans the whole space whose elements, called states, are
said to be in superposition. Any basis can be used (recall from Linear Algebra [9] that
there usually are many!). But in Quantum Computing it is customary to use the most
conventional and well known one: |0〉, |1〉 are a pair of orthonormal basis vectors repre-
senting each classical bit, or ”cbit”, as column vector, |0〉 = [1 0]T and |1〉 = [0 1]T.
A general state of the system (a vector) can be written as: |ψ〉 = α |0〉+β |1〉, where α,
β are complex coefficients (called probability amplitudes) constrained by the normal-
ization condition: |α|2 + |β|2 = 1. This is the model of one qubit. Multiple qubits are
obtained via tensor products. By linearity we just need to say how tensor behaves on
the basis: |i〉 ⊗ |j〉 = |i〉 |j〉 = |ij〉 , where i, j ∈ {0, 1}

If that were all the story, quantum computing would be just a trivial extension of
classical computing. But Quantum Mechanics Principles [14] restrain the kind of per-
missible operations. Operations on qubits are carried out only by unitary operators (i.e.

∗Supported by MCT-CNPq and PRONEX/FACEPE. On sabbatical leave at the School of Computer Sci-
ence, University of Birmingham

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



matrices U such that UU† = U†U = In, where In is the identity n × n matrix and
U† is conjugate transpose also called the Hemitian adjoint of the matrix U ). Quantum
algorithms on n bits are represented by unitary operators U over the 2n-dimensional
complex Hilbert space:|ψ〉 → U |ψ〉. Thus all operators on qubits are reversible. The
sole exception is a special class of operations called measurement which is how infor-
mation are retrieved from a quantum system. In a sense it is a destructive operation that
loses the information about the superposition of states. To measure a general state |ψ〉
collapses (projects) it into either the |0〉 state or the |1〉 state, with probabilities |α|2 or
|β|2 respectively.

A toolkit for a quantum programmer includes: the identity operator1, I, which does
nothing; the flip operator, X, which behaves as the classical NOT on the computational
basis; and the Hadamard transformation, H, which generates superposition of states.
Their matrix representation and and corresponding action on the basis [14]:

I =
[

1 0
0 1

]
I |0〉 = |0〉
I |1〉 = |1〉 X =

[
0 1
1 0

]
X |0〉 = |1〉
X |1〉 = |0〉

H = 1√
2

[
1 1
1 −1

]
H |0〉 = 1/

√
2(|0〉+ |1〉)

H |1〉 = 1/
√

2(|0〉 − |1〉)

Quantum operators are also pictorially represented as quantum circuits with corre-
sponding quantum gates. Figure 1 shows an n-qubit controlled gate U , where U is an
arbitrary unitary operator, whose action on the target qubit (bottommost) is applied or
not depending on the n − 1 (topmost) control qubits [14]. The output is checked by
measurement gates.

•����	
�
......•
U FE

where����	
� = X • X

Fig. 1: A quantum circuit

2 RAM as Matrix Circuits

Random Access Memory [10] is an addressable memory device in which information
can be stored and retrieved. It consists of an array of memory cells where information
is stored as m−bits. Each cell location is unique and associated to a unique number
(address) which can be directly accessed and thus named ”random access”. A RAM
is composed of the memory array, an input register and an output register. Given an

1Very useful when applied in combination (tensor product) with other operators when one needs to leave
part of the input unchanged.
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address in the input register, the content of the respective memory cell is returned in the
output register. If the input register is of size n bits, there are 2n addressable memory
cells. The contents of the memory position 0 ≤ k < 2n is denoted here as C[k]. C[k]
is itself a m−bit register.

The actual implementation in terms of boolean circuits or even semiconductor will
not concern us here (see [10]). The pictorial abstract representation of a RAM as a
table in Figure 2 helps understanding (the input terminals s and d are respectively the
learning strategy and the desired output to be learned and are used later).

s ; 11 . . . 1 C [2n − 1]
d ; 11 . . . 0 C [2n − 2]

x1−−−−−−−→

...
... y

−−−−−−→
... 00 . . . 1 C[1]

xn−−−−−−−→ 00 . . . 0 C[0]

Fig. 2: RAM Node [12]

But view a RAM as circuit composed of matrices acting on cbits (bits represented
as basis vectors) is instructive for what comes later. For the sake of simplicity of the
exposition and with no loss of generality, let us assume that the output of the RAM is
one bit, i.e. m = 1. Let the block matrix A be as2:

A =

„
I 0
0 X

« where
A |00〉 = |0〉 I |0〉
A |10〉 = |1〉X |0〉

This matrix behaves a memory cell capable of returning 0 or 1 (actually |0〉 respect.
|1〉) depending on the corresponding value in the first part of its two-parts input. It
may sound redundant, but bear in mind that this is a half way through the quantum
model presented below. A n−bit input RAM is a collection of 2n of these A’s. The
exponential growth is not a concern at the moment, but it can be remedied by similar
techniques as in [8]. A RAM with fixed and unalterable memory contents (ROM) has
a smaller numbers of matrices. A trained RAM-based neural network has such kind of
ROM memory. A circuit composed of these matrices, using a notation borrowed from
quantum circuits, representing a two-bit input ROM is shown in Figure 3.

Depending on the value of |ab〉 the corresponding matrix Ui is selected with the
binary to decimal correspondence, e.g. |10〉 selects U3, etc. A two-bit RAM with the
more general and capable of ”storing” cbits matrix A is shown in Figure 4

2By abuse of language 0 is used both meaning the number zero and a squared matrix of zeroes or just a
symbol devoid of meaning; the context dictates which is the case
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|a〉 ����	
� ����	
� • • >=
|b〉 ����	
� • ����	
� • >=
|0〉 U0 U1 U2 U3 >= o

where Ui = I or X

Fig. 3: q-PLN Node in quantum circuit

|a〉 ����	
� ����	
� • • FE
|a〉 ����	
� • ����	
� • FE
|0〉

A A A A FE o

|s〉 |s〉 |s〉 |s〉

Fig. 4: RAM with selectors

3 RAM-based Neural Networks in a Matrix Form

RAM-based Neural Networks (RbNN) [12] are parallel distributed systems composed
of simple processing units realised as RAM memories, in general the unit does gener-
alise but networks of RAMs providing the ability to learn from examples and to gener-
alise. They were introduced by Igor Aleksander in the 1960’s.

The building blocks of the our RbNN are the model presented in the last section.
Following the classical presentation of RbNN a variety of matrix RbNN can be now be
proposed such as WISARD, etc. [12] each with its quantisation.

The weightless neural networks composed of the Probabilistic Logic Node (PLN)
need some considerations due to the probabilistic nature of the node. The same Figure 2
can be used to pictorially represent a PLN node. The difference is just that now a 2-bit
number is stored at the addressed memory location (m = 2). The bitstrings 00, 11 and
01 (or 10) respectively represents 0, 1 and u. Additionally, one must have a probabilistic
output generator. The output of the PLN Node is y, if C[x] = y, for y ∈ {0, 1} and
randomly 0 or 1 if C[x] = u.

The Multi-Valued Probabilistic Logic Node (MPLN) differs from PLN by allowing
a wider but still discrete range of probabilities to be stored at each memory content.
A m-bit valued MPLN node can store a value k in the range {0, ..., 2m − 1} which is
interpreted as the firing probability p = k

2m−1 of the node.
A similar analysis to the one in Section 2 using the Hadamard matrix H in addition

to the matrices I and X interpreting the output of H |0〉 as u leads to a matrix formu-
lation of the PLN node. For lack of space this not done here and we rather skip to
the presentation of the quantum version of the PLN node which subsumes the matrix
formulation of the PLN.
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4 Quantisation of the RAM-based Neural Network

The concept of quantum neural computation apparently was first introduced by Kak in
1995 [11]. Kak’s model is an attempt to the quantisation of the weighted neural model
but actually is just a complexification - changing the real valued weights by complex
valued ones - since learning is proposed by directly interfering with the system, violat-
ing quantum principles. Various other models and implementation has since been pro-
posed. Good reviews are [6] and the web page by Li Weigang3. They are all weighted
and there is the challenge of direct implementation in quantum circuits, natural adapta-
tion of the learning algorithms and physical feasibility of quantum learning. These are
characteristics not altogether found in any of the proposed weighted models but are all
found in our model [3].

Another line of research has recently been proposed which closer to this work in
the sense which does not use weighted model and proposes learning algorithms directly
in the quantum circuit model but differs considerably from ours since they do not pro-
pose a (weightless) neural network model but rather uses techniques similar to Machine
Learning [2, 1]

Quantum Probabilistic Logic Node: q-PLN. The values stored in a PLN Node 0,
1 and u are, respectively, represented by the qubits |0〉 , |1〉 and H |0〉 = |u〉. The
probabilistic output generator of the PLN are represented as measurement of the corre-
sponding qubit.

There is an obvious relationship between outputs of a PLN and that of a q-PLN that
associates i to |i〉, where i = 0, 1 or u. The random properties of the PLN are guaran-
teed to be implemented by measurement of H |0〉 = |u〉 from the quantum mechanics
principles (see e.g. Section 2.2 and Chapter 8 of [14] for a lengthier discussion). The
pictorial representation of a q-PLN fully trained (q-ROM) is similar to the Figure 3 but
adding the possibility of Ui be H.

Learning is to change the matrix. Universal deterministic Programmable Quantum
Gate Arrays are not possible in general [13] but the q-PLN requires only three possible
types of matrix. We can define a matrix A similar to the one previously defined

A =

0BB@
I 0 0 0
0 X 0 0
0 0 H 0
0 0 0 U

1CCA
where
A |000〉 = |00〉 I |0〉
A |010〉 = |01〉X |0〉
A |100〉 = |10〉H |0〉

that operates on two additional qubit (which we call selectors) and produces the output
of any Ui matrix, only by adjusting the values of these selectors. By substituting in the
q-PLN in Figure 3 each matrix Ui by the matrix A with the two added input registers
we obtain the q-PLN circuit similar to the Figure 4 but know the A circuits has two
selectors. The selectors determine which the Ui is selected for computation. Learning
is adjust the selectors [3].

Quantum Multi-valued PLN: q-MPLN. In the classical case the difference between
PLN and MPLN is that each MPLN node stores the probability of the node having the

3http://www.cic.unb.br/ weigang/qc/aci.html
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output 1 (out of a discrete set of values in general bigger than just {0, 1, u}). We do the
same for the q-MPLN. In order to accomplish that we simply define the matrices Up:

Up =
( √

1− p −√p√
p

√
1− p

)
With this notation it is routine to check that U0 |0〉 = |0〉, U1 |0〉 = |1〉 and U 1

2
|0〉 =

|u〉 are the corresponding values in a q-PLN node. A general q-MPLN node has p
varying in the (complex) interval [0, 1] which is useful for the quantisation of the pRAM
networks. It is a simple exercise to check that all matrices on this form are unitary [9].
The universal matrix A for q-MPLN has similar form as for the q-PLN but with the
diagonal blocks being the Up.

5 Conclusion and Future Works

The q-RAM proposed above are directly realisable in quantum circuits (quantum hard-
ware) and can be used for the quantisation of all the (classical) RAM-based neural neu-
ral networks and their learning algorithms. Quantisation of the WISARD, GSN, pRAM
and GRAMT are being investigated. Encouraging results on the natural adaptation of
the learning algorithms and physical feasibility of quantum learning for the q-MPLN
models are reported in [3]. Another line of research being pursued is the relationship
between quantum neural networks and the quantum automata.
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