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Abstract. A Brain-Computer Interface (BCI) is an interface that enables
the direct communication between human and machines by analyzing brain
measurements. A P300 speller is based on the oddball paradigm, which
generates event-related potential (ERP), like the P300 wave, on targets
selected by the user. The detection of these P300 waves allows selecting
visually characters on the screen. We present a new model for the detec-
tion of P300 waves. The techniques is based on a neural network that
uses convolution layers for creating channels. One challenge for improving
pragmatically BCIs is to reduce the number of electrodes and to select
the best electrodes in relation to the subject particularities. We propose
a feature selection strategy based on salient connexions in the first hidden
layer of a neural network trained with all the electrodes as input. A new
classifier is created in relation to the remaining topology and the desired
number of electrodes for the system. The recognition rate of the P300
speller over two subjects is 87% by considering only 8 electrodes.

1 Introduction

A Brain-computer interface (BCI) is a direct communication pathway between
a human brain and an external device. BCI systems do not require any move-
ment [1]. For this reason, BCIs are usually used for persons with severe dis-
abilities like spinal cord injuries, who are unable to communicate through any
classical devices [1]. BCIs often use EEG (electroencephalography) techniques
for recording brain signals as this method is more convenient. A BCI command
usually translates the EEG signal produced according to a particular stimulus
(visual or not). The EEG response can correspond to event-related potentials,
event-related desynchronization/synchronization (ERD/ERS) or slow cortical
potentials. In relation to the paradigm, different kinds of features must be ex-
tracted. Different types of classifiers are used for classifying and detecting par-
ticular brain responses. Among these classifiers, artificial neural networks have
been widely used in the field [2, 3, 4, 5, 6]. Besides other models like support
vector machine (SVM) [7, 8] and hidden Markov models [9] have been proven
successful for EEG classification. Neural networks can be used for classifying
EEG and therefore be used for a BCI.

In this paper, we focus on P300-BCIs. P300-BCIs use visual evoked potentials
as brain responses. The P300 wave is an event related potential (ERP) that
can be recorded easily via EEG. The wave corresponds to a positive deflection
in voltage at latency of about 300 ms in the signal after a particular visual
stimulus. It means that after an event like a flashing light, a deflection in the
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signal occurs after 300ms. If a P300 wave is detected 300ms after a stimulus in
a specific location, it is possible to deduce that the user was paying attention
to this same location. The signal is typically measured most strongly by the
electrodes covering the parietal lobe. The detection of a P300 wave is equivalent
to the detection of where the user was looking 300ms before its detection; Farwell
and Donchin first introduced P300 potential into BCI in 1988 [10]. The location
of the electrodes where the signal has a high intensity depends of the subject.
For a non-experimental BCI, it is not a practical solution to cover the whole
head with electrodes. The position of the electrodes and their number must be
chosen wisely. The choice of the electrodes corresponds to a feature selection
problem. We propose a new method for selecting the best electrodes. This
method is based on the analysis of the weights of a neural network once this
network has been trained with all the electrodes. Contrary to methods like the
optimal brain damage [11], the goal is to prune useless weights only in the first
hidden layer. The selection of the best active weights allows removing useless
electrodes in the classification of P300 waves.

The classifier for the detection of P300 waves is described in the first section.
The second section is dedicated to the feature selection strategy. The experi-
ments and the database are detailed in the third section. Finally, the results
and their discussion are presented in the last section.

2 Classifiers

For the detection of P300 waves in the EEG, a classifier based on a convolutional
neural network (CNN) has been used. This neural network is a multi-layer
perceptron (MLP), which contains more than one hidden layer. Besides, the
hidden layers are not fully connected. A special topology in relation to the
problem translates a particular path in the information processing. These neural
networks are used for object recognition [12] and have been successfully used
for handwriting character recognition [13]. They allow the automatic feature
extraction within layers and keep as input the raw information without specific
normalization, except for scaling and centering the input vector. This kind of
model has many advantages when the input data contain an inner structure like
for images and where invariant features must be discovered, i.e. when a kernel
based method cannot catch the complexity of the problem. One advantage of
convolutional neural network is the possibility to include knowledge inside the
network, contrary to kernel based methods [14]. One other interest is to avoid
hand designed input features, which are not derived by the general problem.

The network is composed of 5 layers. Each layer has a specific semantic: the
first hidden layer represents the creation of channels; the second hidden layer
subsamples and filters the signal. The input layer, L0, represents the raw EEG
signal Ii,j with 0 ≤ i < Nelec and 0 ≤ j < Nt where Nelec is the number of
electrodes considered in the experiment, Nt is number of sampled points in the
signal. In the experiments, Nt = 78 it corresponds to 650ms of the recorded
signal after a flashing light. The first hidden layer, L1, is composed of Ns maps.
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We define L1Mm, the map number m. Each map of L1 has the size Nt. Each
neuron j of this layer is connected to Nelec corresponding neurons in the input.
Furthermore, for one map, each neuron shares the same set of weights. It assures
the independence of the weights over time within one pattern. The second hidden
layer, L2, is composed of 5Ns maps. Each map of L2 has 6 neurons. Each neuron
of this map is connected to 13 neurons of the previous layer, without overlapping.
The third hidden layer, L3, contains 100 neurons. This layer is fully connected
to the different maps of L2. Finally, the output layer, L4, contains 2 neurons
that represent the 2 classes of the problem (P300 and not P300). This layer is
fully connected to L3.

The weights are corrected during learning thanks to a gradient descent by
minimizing the least mean square error of the validation database. 95% of the
training database is used effectively for learning whereas the remaining 5% is
used as the validation database.

3 Feature selection strategy

As the first hidden layer corresponds to the creation of the channel, it is possible
to extract information about the most relevant electrodes once the network is
trained. When a weight is close to 0 then it means that its discriminant power
is very low. We define the power of the electrode i by:

ξi =
j=Ns∑
j=0

|w(i, j)|

where 0 ≤ i < Nelec and w(i, j) represents the weight of a link between any
neuron of the map j to the electrode i at any time. ξi is the combination of the
different maps that compose the network. Therefore, it is possible to create a
new classifier with a pre-fixed number of x electrodes by selecting x electrodes,
which correspond to the x higher ξ values. In this case, the input size is reduced.
It can also be seen as pruning the useless weights in the initial network. We define
several CNN that will be used in the next sections. CNN-T is the classifier that
uses all the electrodes. CNN-8-FS considers the 8 best relevant electrodes. The
classifier CNN-8 corresponds of the arbitrary selection of 8 electrodes: FZ , CZ ,
PZ , P3, P4, PO7, PO8 and OZ . These electrodes were chosen in relation to the
guideline provided during a BCI tutorial in Utrecht, Holland, 2008.

4 Experiments

The considered database is the data set II from the third BCI competition [15].
In these experiments, the subject was presented with a matrix of size 6 by 6,
that contains characters: [A-Z], [1-9] and [ ]. The main classification problem
has therefore 36 classes. The subject’s task was to sequentially focus attention
on characters from a pre-defined word. The 6 rows and 6 columns of this matrix
were successively and randomly intensified at a rate of 5.7Hz. The character to
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select is defined by a row and a column. Therefore, 2 out of 12 intensifications
of rows/columns highlighted the expected character, i.e. 2 of the 12 intensifica-
tions should produce a P300 response. Row/column intensifications were block
randomized in blocks of 12. The sets of 12 intensifications were repeated 15
times for each character epoch. All the rows/columns were intensified 15 times.
Thus, 30 P300 responses should be detected for each character.

Signals have been recorded from two subjects in five sessions with the BCI2000
framework [16]. Signals were collected from 64 ear-referenced channels. The sig-
nal was bandpass filtered between 0.1 and 60Hz and digitized at 240 Hz [17]. The
training database is composed of 85 characters while the test database contains
100 characters. Each character epoch is supposed to contain 2 P300 signals, one
for a row flash and one for the column flash. For the training database, the
number of P300 to detect is 85*2*15.

5 Results

The evaluation of the P300 speller is divided into two steps: the results of the
P300 detection and their impact in the character recognition. Table 2 presents
the recall and precision obtained for the detection of P300 waves. The recall and
precision are defined by Recall=TP/(TP+TN) and Precision=TP/(TP+FP),
where TP, TN and FP represents respectively the number of true positive, true
negative and false positive. The ξ for all electrodes are displayed in figure 1.
The gray-level represents the values of ξ (dark for high values, white for low val-
ues). We can observe the precise location of the relevant electrodes on subject A
whereas the information is more elusive with subject B. The character recogni-
tion rate (in %) is presented for several epochs in table 2. The best accuracy is
achieved with CNN-T (94.5%). The accuracy reaches 87% and 87.5% for CNN-
8-FS and CNN-8 respectively. These results highlight the low difference between
the feature set created by using the connections with the highest salience and
the fixed feature set given from the neuroscience field when the information is
spread.

As expected and like for the P300 detection, the results are lower than when
all the 64 electrodes are used. The precision of the P300 response is better when
the electrodes are selected thanks to the proposed strategy. The recall is also
better for subject B. However, these improvements in the detection are only
translated for subject A, who provides better results in character recognition
compared to the fixed choice of the electrodes. It can be explained by the
concentration of the relevant electrodes in particular locations (around PZ).
As the information is more dispersed and homogeneous with subject B, the
impact of the electrode selection is less important. Nevertheless, half of the
selected electrodes are common between both subjects and the set of pre-defined
electrodes. Noteworthily, these two subjects are not representative of the whole
population and possess an average P300 response quality. In addition to the high
recognition rate of the initial model (CNN-T), artificial neural networks can be
considered as tools for analyzing the topology of particular brain activities.
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Table 1: Electrode ranking.
Subject Best electrodes

1 2 3 4 5 6 7 8
A PZ PO7 C1 POZ C5 CPZ PO8 CZ

B PO8 O1 PO7 CZ PO3 PZ CPZ PO4

Table 2: Results of the P300 speller.
Method Subject P300 detection Epoch

Recall Precision 1 5 10 15
CNN-T A 0.674 0.317 16 61 86 97
CNN-T B 0.678 0.407 35 79 91 92
CNN-8-FS A 0.612 0.292 12 48 67 87
CNN-8-FS B 0.665 0.366 32 72 82 87
CNN-8 A 0.617 0.287 14 46 64 84
CNN-8 B 0.639 0.355 28 71 85 91

Fig. 1: Discriminant power (ξ) for each electrode.

Subject A Subject B

6 Conclusion

A new model has been presented for the detection of P300 waves and its use in
a BCI P300 speller. This model was tested on the database 2 on the third BCI
competition and provided excellent results (94.5%). Thanks to its particular
topology, this network allows further analysis for discovering the best active
electrodes in the classification. The weight analysis of the network is consistent
to neuroscience knowledge. By prunning the network, it is possible to select a
relevant subset of electrodes. This strategy allows a recognition rate of 87% by
using 8 electrodes. Further works will deal with the selection of the optimal
number of electrodes in relation to a desired accuracy.
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G. Pfurtscheller, J.d.e.l. R. Millán, M. Schröder, and N Birbaumer. The BCI competition.
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