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Abstract. An extension of the switching-state models (SSSM) that allows arbi-
trary number of components is presented. We introduce a Dirichlet process prior
over the mixture components of the linear models. This prior allows the inference
on the number of linear models to be put into the mixture. We develop a distance
measure in the space of linear Kalman filters with the use of the Kullback-Leibler
divergence over the conditional probabilities induced by the individual Kalman fil-
ters. The introduced distance measure allows to remove components that are no
longer relevant, making the algorithm more effective. We test the proposed algo-
rithm on both artificial and real-world data.

1 Introduction
The analysis of sequential data is an important research topic: this type of data is found
in several domains like the analysis of medical data [1], the forecasting of economical
fluctuations, or in robotics, where the information to be processed lies in sequential
data obtained from the sensors [8]. In this paper we focus on analyzing sequential data
obtained from robot manipulation.

We extend the linear Kalman filtering (KF) scheme [9] to a nonlinear framework
that is better suited for the usually nonlinear real world data. Although nonlinear mod-
eling is a better choice, it is very often computationally infeasible. A possible solution
to the intractability is to use a nonlinear model built from locally linear models [7, 11],
similar to the mixture models in clustering [2], called switching-state space models
(SSSM). We extend the SSSM’s with the possibility to determine the number of com-
ponents in the data set. This is achieved by using a Dirichlet prior assumption on the
structure of the model that allows the insertion of a new local KF and to fit it to the data
we have. As the number of components can grow indefinitely, we need a mechanism
that trims the model by removing filters that are not used. This is achieved with the
introduction of a distance measure in the space of the local Kalman filters.

The paper is organized as follows: first an introduction is presented into the topic of
SSSM’s and the Dirichlet prior on the structure of the model is introduced. Section 3
contains the proposed parameter estimation algorithm for the SSSMs. The new Kalman
filters measure is described in Section 4. The simulations we conducted to support our
approach are presented in Section 5, with conclusions drawn in Section 6.

2 Switching state-space models
In this paper we build a generative model for the observed data assuming that the data
are coming from several distinct sources. We further assume that these sources are
“simple”, although in general they can also be more complex than linear. Here we fo-
cus on simple individual models without knowing from which component a specific
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data was obtained, known as mixture models in machine learning [7, 11]. For numer-
ical tractability we assume that the sources are Kalman filters [2, 8, 9], therefore we
keep the simple models and only mention that the nonlinear extension has been stud-
ied by Honkela [10] using neural networks. Nonlinearity is introduced via the locally
linear switching state-space models (SSSM’s), where the sources are Kalman filters. In
this case the SSSM is called a switching state Kalman filter (SSKF). If we denote the
observations with zk and the latent vector as xk, the state-space equations are as follow:

x
(s)
k = FFF

(s)
x

(s)
k−1 + w
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k
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where FFF
(s) is the time transition matrix, HHH

(s) is the output observation matrix. We
assume that the dimensions of the matrices are consistent such that all multiplications
can be performed in eq. (1). The random variables w

(s)
k and v

(s)
k are the driving and

observation noise processes, characterized by covariance matrices RRR
(s) and QQQ

(s) re-
spectively. An important ingredient of the mixture model, the superscript (s) – with s

the switching variable – defines which component KF produced zk, the actual output.
We assume N components: s ∈ {1, . . . , N}. The dynamics of s is defined by a Hidden
Markov Model (HMM) [2, 13]. Let Φ be the transition probability and π the initial
state distribution of the HMM. To be able to estimate the parameters of the local filters,
we have to assign the individual data points to a filter, i.e. we have to know the value
of s for each zk, done with the use of the HMM. The complete set of parameters of the
SSKF is the following:

θ = {θ(s)}Ns=1 ∪ {π, Φ},

θ(s) = {FFF
(s)

,HHH
(s)

,QQQ
(s)

,RRR
(s)

}. (2)

We cannot assume we know N a-priori, thus we impose a prior distribution over the
components and the number of components our model has. The choice of the Dirichlet
prior looks convenient because of its useful properties (e.g. the measures drawn from
a Dirichlet process (DP) are discrete with probability one). It is the multivariate gen-
eralization of the Beta distribution, it defines the belief that the probabilities of K rival
events have given values xi if each event has been observed αi − 1 times. The DP is
the extension of the Dirichlet distribution to continuous spaces. We do not provide an
exact definition of the DP, we point to the references by Ferguson [6] or Teh [16].

We model the parameters of a SSKF, and implicitly the number of components to
be sampled from the following DP:

θ(s) ∼ DP(α,G)G)G),

where G is the base distribution, assumed to be uniform on the space of the parameters,
this space is taken from eq. (2). The parameter α is a concentration parameter used to
set the range of the number of components the model has. It is important to mention that
with the proposed hierarchical approach we can deal with data build from a potentially
infinite number of sources. This is possible since the structure of the model is not fixed
and its complexity is dependent on the data. We next describe the inference algorithm.
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Fig. 1: Illustration of the component detection scheme.

3 Learning the SSKF parameters
The SSKF learning algorithm is introduced by Ghahramani and Hinton [7] and by Mur-
phy [11]. The inference is based on a modified version of the Expectation-Maximization
(EM) algorithm [7]. We extended this algorithm to infer not only the parameters of the
local KF’s and the global HMM, but also the number of Kalman filters required by the
data. We summarize the learning algorithm for SSKF with Dirichlet prior as follows:
[E.] In the expectation step we calculate the observation probability – p(z k|Sk = m) –
for every state-space model from the prediction error. Using this probability we ob-
tain the responsibility assigned to every state-space model and every observation –
p(Sk = m) – using the forward-backward algorithm for the HMM. Lastly we run the
Kalman smoother for every state-space model, using data weighted with the responsi-
bility obtained.
[M.] In the maximization step we re-estimate the parameters for each state-space
[2, 17], using data weighted by the responsibility from the E. step. Next we re-estimate
the parameters of the HMM using the Baum-Welch algorithm [2, 13].
[Comp] We also introduce a third step that infers the number of components: adds or
removes local KF’s to the SSKF. First we define the removal procedure then the addi-
tion of new models. A component can be neglected in two cases: either when (1) its
contribution drops below a threshold, as suggested by Bishop [2], or (2) when filters
generate data very close to each other. The first case is detected by examining the re-
sponsibilities from step E. To detect the second case we developed a distance measure
between two KF’s – defined in Section 4.

The immediate approach that assumes a maximum number of components and dur-
ing the learning process eliminates unnecessary SSKF-s is usually computationally un-
feasible. Starting with a small initial component number and increasing its value based
on data is a more convenient solution. This can be achieved by using the Dirichlet pro-
cess extension, as introduced in Section 2. We want to get the posterior distribution
of the states given by the Dirichlet process. The most convenient way is using Gibbs
sampling [2, 14]. In the Gibbs sampling from a Dirichlet process mixture model [3, 12]
we iterate for every KF model the following procedure: we sample a KF conditioned
on all other switching variables except itself: s−n and the whole observed data set z:

p(sk
n = 1|z, s−n) ∝ p(zn|z−n, s−n, sk

n = 1)p(sk
n = 1|s−n), (3)

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



Fig. 2: Partitioning of (a) rotation data and (b) Lorenz attractor.

where the second term can be computed using eq. 4 below. Let k be the component we
have chosen and assume that there are N components. We choose k with probabilities
given by

p(sk
n = 1|s−n) =

nk

α + N − 1
∀k ≤ N, and p(sN+1

n = 1|s−n) =
α

α + N − 1
, (4)

where nk is the number of occurrences of the k-th filter. The right-side of eq. (4) is the
probability that a new filter will be inserted into the SSKF.

The first term of eq. 3 can be obtained using the Kalman smoother for the new
potential state and comparing its likelihood based on the prediction error of the filters.
The Dirichlet process provides means to add new components to the SSKF and we now
introduce a method that allows for simplification: we compute a “distance” in the space
of Kalman filters presented next.

4 Distance measure of Kalman filters
The Kullback-Leibler (KL) divergence is widely used to measure distances between
probability distributions. Additionally to its popularity, we know that predictions of the
filter are Gaussian random variables and the computation of the KL divergence between
Gaussians has analytical form [4]. We introduce this measure based on KL divergence:

d(KF(1), KF(2))
o
=

∫
dp(z0) KL

(
p(z

(1)
1 |z0)‖p(z

(2)
1 |z0)

)
. (5)

In the equation above we used KF
o
= p(z1|z0) with z1 the predicted random variable

conditioned on z0. Since z0 itself is unknown, we treat it again as a random variable
p(z0) = N (0,ΣΣΣz0

) and average with respect to it, as shown above. KF(1) and KF(2) are
the two Kalman filters and KL(·, ·) is the symmetric extension of the KL divergence [5]
between the two conditional predictive distributions. Thus the evaluation of p(z 1|z0) is
needed for each filter. For each KF this has the formula:

p(z1|z0) = N (HHHFFFμ0,HHH(FFFΣΣΣ0FFF
T + QQQ)HHHT + RRR), (6)

where μT
0 = zT

0RRR
−1

HHH(HHHT
RRR

−1
HHH + PPP

−1
0 )

−1
and ΣΣΣ0 = (HHHT

RRR
−1

HHH + PPP
−1
0 )

−1
, where PPP0

satisfies HHHPPP0HHH
T = (ΣΣΣz0

− RRR). Note that the KL distance between Gaussians has closed
form, the evaluation of eq. (5) using eq. (6) is straightforward [4], therefore we have an
easily computable measure between two KF’s using minimalist assumptions about the
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α with DP no DP
0.6 3.1250 2.0000
0.8 3.3000 2.4500
1.0 3.1500 2.7788
1.2 3.2500 2.9851
1.4 3.3250 3.1347

α with DP no DP
0.6 10.0125 3.0000
0.8 10.4875 17.0125
1.0 10.5125 21.4986
1.2 10.2750 23.2345
1.4 10.6375 24.5583

Table 1: (a) number of detected components, (b) steps taken to converge. The initial
component number in no DP case was �4.3 ∗ α
.

most probable value of z0. Also interesting to note is that this distance does not depend
on the dimension of the latent space of the filters, therefore the presented KL-based
distance measure allows for direct comparison between filters of arbitrary latent spaces
that produce output of the same dimension.

5 Simulations
We tested our method on artificial and real–world data, with our main interest being
the inference on the number of components. We used three data–sets to examine the
effectiveness of our proposal. The first was created using three filters, each with a two
dimensional latent space and two dimensional output space. The first filter implemented
rotation, the second one left the data unchanged, and the third one was also rotation,
in the opposite direction to the first filter. The observations were corrupted with zero
mean normal noise with variance 0.1. We plotted the first dimension on Figure 2.a, each
detected component with a different style. We see that indeed the proposed algorithm
identifies mostly correctly the components. In the second experiment we wanted to
partition the three dimensional Lorenz attractor with parameters ρ = 28, σ = 10 and
β = 8/3 [15]. There were just two components left, as it is shown in Figure 2.b. The
third set is the KIN40 data–set1, a realistic simulation of the forward dynamics of an 8

link all-revolute robot arm.
We run all three experiments with different hidden dimension of the internal states

and our prior on the number of sources. Each parameter settings were tested twenty
times, totally performed 3 × 600 experiments. Table 1 shows the experimental results.
Table 1.a contains the number of active components after the SSKF converged as a func-
tion of the prior assumption about the number of it. We see with the use of a Dirichlet
prior the component number is almost independent of the concentration parameter α.
Table 1.b contains the number of EM steps needed to converge, one can again see the
advantages of the use of the Dirichlet process together with a KL-distance based re-
moval of components. Again, the convergence speed is almost constant, not depending
on the prior values.

6 Discussion and further research
In this paper we presented a generalization of the SSKF framework by adding a Dirich-
let prior over the structure of the model. This extension allows us to model SSKFs

1http://ida.first.fraunhofer.de/∼anton/data/kin40k.mat
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whose number of component is not fixed, theoretically can be very high, often in-
finitely many components and make the computations feasible. We also presented a
new distance measure of the Kalman filters, this proved to be useful step in optimizing
with respect to the number of components of the mixture. The presented simulations
show that using our proposal a faster and a more efficient segmentation of the mixture
model can be achieved, however, these results rely on generated data. We aim to test
the method on real world data too, where the components have practical significance.

The presented component detection scheme is unsupervised: there is no “user” in-
tervention required for the method to work. Furthermore, the result of this filtering is
a set of “simple” models that can be used as building blocks for hierarchical motion
planning systems, forming the basis of an ontology. It would be interesting to evalu-
ate the component detection scheme in conjunction e.g. with a reinforcement learning
algorithm that can borrow templates from the SSKF.

The authors acknowledge the support of the Romanian Ministry of Education, grant
PN2 11-039/2007.

References

[1] P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. The
MIT Press, 1998.

[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[3] D. M. Blei and M. I. Jordan. Variational methods for the Dirichlet process. In

ICML 2004, pages 1–12. ACM, 2004.
[4] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley & Sons,

1991.
[5] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-

tion. Springer, New York, 1996.
[6] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals

of Statistics, 1(2):209–230, 1973.
[7] Z. Ghahramani and G. E. Hinton. Switching state-space models. Technical report,

Universtiy of Toronto, 1996.
[8] M. S. Grewal and A. P. Andrews. Kalman Filtering: Theory and Practice Using

MATLAB. Wiley and Sons, second edition, 2001.
[9] S. Haykin. Kalman Filtering and Neural Networks. Wiley and Sons, 2001.

[10] A. Honkela. Nonlinear Switching State-Space Models. PhD thesis, Helsinki Uni-
versity of Technology, 2001.

[11] K. P. Murphy. Switching Kalman filters. Technical report, 1998.
[12] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture mod-

els. Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.
[13] L. Rabiner. A tutorial on HMM and selected applications in speech recognition.

Proceedings of the IEEE, 77(2):257–286, February 1989.
[14] C. P. Robert and G. Casella. Monte Carlo Methods. Springer, 2004.
[15] S. H. Strogatz. Nonlinear Dynamics and Chaos: with Applications to Physics,

Biology, Chemistry and Engineering. Perseus Books Group, 2001.
[16] Y. W. Teh. Dirichlet processes. Submitted to Encyclopedia of Machine Learning,

2007.
[17] B. M. Yu, K. V. Shenoy, and M. Sahani. Derivation of Kalman filtering and

smoothing equations. Technical report, Stanford University, 2004.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.




