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Abstract. We propose a “time-biased” and a “space-biased” method for
spatiotemporal independent component analysis (ICA). The methods rely
on computing an orthogonal approximate joint diagonalizer of a collection
of covariance-like matrices. In the time-biased version, the time signatures
of the ICA modes are imposed to be white, whereas the space-biased ver-
sion imposes the same condition on the space signatures. We apply the
two methods to the analysis of gene expression data, where the genes play
the role of the space and the cell samples stand for the time. This study
is a step towards addressing a question first raised by Liebermeister, on
whether ICA methods for gene expression analysis should impose inde-
pendence across genes or across cell samples. Our preliminary experiment
indicates that both approaches have value, and that exploring the contin-
uum between these two extremes can provide useful information about the
interactions between genes and their impact on the phenotype.

1 Introduction

A gene can be thought of as a “recipe” that specifies how to assemble amino
acids in order to build a certain protein. The process by which the gene is
translated into the protein is known as gene expression. This process involves
copying the genetic information into a molecule of messenger RNA (mRNA),
therefore, measuring in a cell the quantity of a given mRNA transcript is a way
to assess the level of expression of the associated gene. Nowadays, due to the
rapid development microarray technology, gene expression levels of more than
20,000 human genes are available for thousands of different cells samples.

The amount of a given mRNA transcript in a cell is determined by a whole
range of biological processes that act to reduce or increase this number. There-
fore, it seems reasonable to model the level of mRNA transcripts as a weighted
sum of activation patterns associated to various biological processes. In Matlab
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notation, this reads

X(:, j) =
n∑

k=1

A(:, k)B(k, j), j = 1, . . . , T,

where X ∈ R
m×T is the gene expression matrix containing the expression levels

of m genes over T cell samples, A(:, k) ∈ R
m is the kth activation pattern,

and B(k, j) is the weight of the kth activation pattern in the jth cell sample.
This suggests that blind source separation (BSS) via independent component
analysis (ICA)—which aims at recovering statistically independent sources from
linear mixtures—has potential for extracting biologically meaningful activation
patterns from gene expression data, in an unsupervised way. This was confirmed
in several studies that go back to Liebermeister [1]; see [2] and references therein.

Most ICA algorithms rely on a contrast function that evaluates the “level
of statistical independence” of a collection of signals, and on an optimization
algorithm to maximize the contrast function and hence recover signals that are
as independent as possible. Different choices for the contrast function and for the
optimization algorithm lead to different ICA methods. The results in [2] show
that the various ICA algorithms do not differ much from each other in their
ability to produce activation patterns that are similar to known gene pathways
or regulatory motifs.

There is another choice that is made when applying ICA to gene expres-
sion data, namely: should independence be imposed across genes or across cell
samples. Independence across genes means that the activation patterns (i.e.,
the columns of A) should be as independent as possible. Independence across
samples means that the weights attributed to the activation patterns (which are
found in the corresponding rows of B) should be as independent as possible.
This freedom was already pointed out by Liebermeister [1, p. 54].

In practice, the level of statistical independence must be evaluated along a
dimension of X that has sufficient length for the evaluation to be significant. In-
deed, BSS estimates are poor when the number of available observations is not
much larger than the number of signals. In the early days of microarray technol-
ogy, the best data sets had thousands of genes but less than a few dozens of cell
samples. Because the dimension along cell samples was so small, independence
across genes has been favored in the literature. However, with the wider avail-
ability of microarray technology, data sets with larger sample sizes are emerging,
which makes statistics over cell samples reasonably reliable. For example, the
Wang database that we analyze in this paper contains 285 samples.

In this paper, we investigate how the choice of imposing independence across
genes or across samples impacts on the ability of ICA to recover known gene
pathways. Moreover, we consider a middle way, in the spirit of the spatiotem-
poral ICA of Stone et al. [3], that makes it possible to mitigate between these
two extremes. The contrast function of spatiotemporal ICA consists of a linear
combination, tuned by a parameter α, of a statistical independence measure of
the columns of A and a statistical independence measure of the rows of B. The
term “spatiotemporal” comes from the application to fmri data where X(i, j)
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gives the intensity of pixel number i at time j; by analogy, we will refer to
independence across genes as “spatial” ICA (α = 0) and independence across
samples as “temporal” ICA (α = 1).

Our version of spatiotemporal ICA uses a contrast function based on ap-
proximate joint diagonalization (JD) of covariance-like matrices, as in Theis et
al. [4]. However, we impose the approximate joint diagonalizer to belong to
the orthogonal group, which has the advantage of being a compact manifold
(see, e.g., [5]). This leads us to propose two flavors of spatiotemporal ICA: a
time-biased version, where the rows of B are uncorrelated (BB� = I), and a
space-biased version, where the columns of A are uncorrelated (A�A = I).

2 Spatiotemporal ICA

Let X ∈ R
m×T be a matrix containing the expression levels of m genes over T

experiences (or cell samples). In this section, we present the concept of time-
biased and space-biased spatiotemporal ICA for X. Because of the analogy with
the better-known application to fmri [3], we refer to the first dimension of X
(the dimension along genes) as the space dimension, and the second dimension
(along cell samples) as the time dimension.

First, the spatial and temporal means are removed, which yields the new
matrix

X := (I − 1
m

1m1�
m)X(I − 1

T
1T 1�

T ),

where 1m denotes the vector of all ones in R
m and the superscript � denotes the

transpose. Next, the dimension is reduced to n components using a truncated
SVD, which yields

X̂ = UnDnV �
n

where X = UDV � denotes an SVD of X with the elements of D in decreasing
order, and Un = U(:, 1 : n), Dn = D(1 : n, 1 : n), Vn = V (:, 1 : n). The ICA step
per se is based on the observation that

X̂ = UnDnV �
n = UnDnW−1

︸ ︷︷ ︸
=:A

WV �
n︸ ︷︷ ︸

=:B

,

for all W ∈ R
n×n
∗ , where R

n×n
∗ denotes the set of all n × n invertible matrices.

Given covariance-like functions Ci, i = 1, . . . , N , and a spatiotemporal parameter
α ∈ [0, 1], spatiotemporal ICA seeks the matrix W that maximizes the contrast
function

f̃α : R
n×n
∗ → R : W �→ −

N∑
i=1

(
off (αCi(B)) + off

(
(1 − α)(Ci(A�))−1

))

= −
N∑

i=1

(
off

(
αWCi(V �

n )W�)
+ off

(
(1 − α)W (Ci(DnU�

n ))−1W�))
,
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where off(·) returns the sum of the squares of the off-diagonal elements of its
matrix argument, and the Ci’s are covariance-like matrix-valued functions with
the transformation property

Ci(W�V �
n ) = W�Ci(V �

n )W,

for all W . Some examples of covariance-like functions are mentioned in [4, §4.1].
Once the optimal W is found, the matrices A of activation patterns and B of
weights are given by A = UnDnW−1 and B = WV �

n . The parameter α makes
it possible to explore a continuum between the spatial model (α = 0) and the
temporal model (α = 1). Note that when α = 1, we recover the classical JD-
based contrast function as, e.g., in JADE [6] (or see [7]).

Up to here, the development can be seen to be mathematically equivalent to
the one in [4]. In this work, however, we restrict W to belong to the orthogonal
group O(n) = {W ∈ R

n×n : W�W = I}; that is, we maximize fα := f̃α

∣∣∣
O(n)

.

This restriction is equivalent to imposing that B is “white”, i.e., BB� = I.
We call the method time-biased (TB-stICA), because the time signatures of the
ICA modes are required to be white. Restricting W to O(n) has a computational
advantage: O(n) is compact which, along with the continuity of the cost function,
ensures that the maximum of fα exists.

To obtain the space-biased flavor of JD-based spatiotemporal ICA (SB-
stICA), we start from the decomposition

X̂ = UnDnV �
n = UnW︸ ︷︷ ︸

=:A

W−1DnV �
n︸ ︷︷ ︸

=:B

and follow a similar development. Observe that it is now A that is guaranteed
to be white, in the sense that A�A = I.

3 Results and model validation

We applied our spatiotemporal ICA algorithms to the “Wang” [8] breast cancer
data set. In order to assess the ability of the algorithm to recover existing
pathways, we used a pathway enrichment index (PEI), as defined in [2]. Roughly
speaking, the PEI counts the fraction of pathways that display a “sufficient
matching” with at least one activation pattern. We used the same database of
536 pathways as in [2]. In our spatiotemporal ICA algorithms, the covariance-
like matrices Ci are chosen as n(n+1)

2 JADE-like fourth-order cumulants, n =
10, and the approximate joint diagonalizer of fα is sought using an algorithm
based on Jacobi rotations, as in the original JADE algorithm [6]. Our Matlab
implementation of the algorithm evolved from the stJADE algorithm of Theis [4].

Fig. 1 shows the obtained PEI as a function of the spatiotemporal parame-
ter α. The leftmost point corresponds to spatial ICA (independence is assessed
solely across genes, which is the usual practice as we mentioned in the introduc-
tion), and the rightmost point provides the PEI for temporal ICA (independence
is evaluated purely across cell samples).
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Fig. 1: PEI for database Wang: X ∈ R
14913×285

One should not be led to believe that the features seen in Fig. 1 are generic.
They have been obtained for a specific gene expression data set, a particular
pathway database, and a spatiotemporal contrast function that involves several
choices (a particular JD-based cost function, with N = n(n+1)

2 covariance-like
matrices built as in JADE). Nevertheless, Fig. 1 shows some interesting features,
which will need to be confirmed in forthcoming work. Notably, in this case,
ICA across cell samples performed slightly better than ICA across genes. This
suggests that the idea of imposing independence across cell samples is not to be
dismissed. Another interesting finding is that introducing a bit of temporal ICA
into spatial ICA may yield a PEI that is quite superior to the PEI obtained with
the purely spatial ICA. Our preliminary experiments show that this peak around
α = 0.1 does not appear systematically with other gene expression data sets,
however, in this case at least, spatiotemporal ICA has made it possible to reveal
pathways (e.g., classicPathway, compPathway, AndrogenReceptor) that were not
detected by purely spatial or purely temporal ICA. Since the measurement of
gene expression remains a resource-consuming process, it is important to extract
as much information as possible from the available data. Amongst the many data
analysis methods available, spatiotemporal ICA clearly deserves attention.
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4 Conclusion

We have proposed two kinds of spatiotemporal ICA algorithms that work by
computing an orthogonal approximate joint diagonalizer of a set of covariance-
like matrices. We have shown that the algorithms are valuable methods for
discovering pathways in an unsupervised way from gene expression data. A more
systematic analysis, with other gene expression data sets and other pathway
databases, will be required to better evaluate how advantageous it may be to
use a spatiotemporal ICA method rather than purely spatial or purely temporal
ICA.
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catholique de Louvain, 2008. Accepted for publication in the proceedings of
the 8th International Conference on Independent Component Analysis and
Signal Separation (ICA2009).

[8] Yixin Wang, Jan GM Klij, Yi Zhang, and Anieta M Sieuwerts. Gene-
expression profiles to predict distant metastasis of lymph-node-negative pri-
mary breast cancer. Lancet, 365:671–679, 2005.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.




