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Abstract. For severely disabled people, Brain-Computer Interfaces
(BCIs) may provide the means to regain mobility and manipulation ca-
pabilities. However, information obtained from current BCIs is uncertain
and of limited bandwidth and resolution. This paper presents a Bayesian
framework that estimates from uncertain BCI signals a richer represen-
tation of the task a robotic mobility or manipulation device should ex-
ecute, such that these devices can be operated more safely, accurately
and efficiently. The framework has been evaluated on a simulated robotic
wheelchair.

1 Introduction

People suffering from quadriplegia such as those with a locked-in syndrome can-
not control most assistive devices with conventional interfaces. A promising
solution for these people are Brain-Computer Interfaces (BCIs). Unfortunately,
information from BCIs arrives at a relatively slow pace, and it is usually noisy
and of limited resolution. This may prohibit the efficient and safe direct control
of robotic mobility and manipulation devices. This paper focuses on the inter-
pretation of noisy BCI signals for continuous control of assistive devices. From
the noisy BCI signals and an observation of the user’s environment, we estimate
a richer representation of the task that the user has in mind for the assistive
device. This is the problem of plan recognition or intent estimation [1]. It is
hoped that based on this richer task representation, the user can be helped in a
safer and a more accurate and efficient way as compared to a direct execution
of the noisy BCI commands.

Section 2 presents our Bayesian plan recognition framework for BCIs. In
Section 3 this plan recognition framework is applied to assistive wheelchairs. Fi-
nally, Section 4 presents experimental results regarding BCI control of a robotic
wheelchair in simulation.
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2 Bayesian plan recognition using BCIs

Generally speaking, users want an assistive robot to reach a certain goal con-
figuration cgoal with a certain goal velocity vgoal. For example, cgoal may
correspond to a desired cursor position in the case of mouse control in multi-
media applications, to a desired goal position for a wheelchair, or to a desired
end effector configuration for a robotic manipulator. A configuration c and ve-
locity v will be represented jointly as the robot state x. A user plan ik at time
k can then be generically described as a trajectory ik = {xcurrent, · · · ,xgoal},
which the user has in mind to achieve the goal state xgoal from the current robot
state xcurrent.

In each time step k, hypotheses regarding user plans ik are generated. In
this paper, first all plausible goal state candidates xgoal are generated, and in a
second phase all trajectories ik to these goal states. A probability distribution is
maintained over the generated user plan hypotheses ik. Typically, at start-up,
the probability function over user plans is modelled to be a uniform distribution,
since at that time little is known regarding the desired robot’s goal state xgoal.

We assume that information from at most m past time steps influences the
user plan and user signal at time k. At each time instant k, the BCI user
performs a mental task corresponding to a discrete robot command uk, and
the algorithm that processes the EEG signals gk−m:k resulting from the user’s
thoughts yields a likelihood function over the set of possible commands uk, i.e.
p

(
uk−m:k|gk−m:k

)
. The probability distribution over user plan hypotheses is

then determined as follows:

p
(
ik−m:k|gk−m:k

)

total probability
=

∑
uk−m:k

p
(
ik−m:k, uk−m:k|gk−m:k

)

product rule
=

∑
uk−m:k

p
(
ik−m:k|uk−m:k, gk−m:k

) · p (
uk−m:k|gk−m:k

)

see text=
∑

uk−m:k

p (ik−m:k|uk−m:k) p
(
uk−m:k|gk−m:k

)
.

(1)

Simplification of p
(
ik−m:k|uk−m:k, gk−m:k

)
to p (ik−m:k|uk−m:k) in the last equa-

tion is possible because knowledge of ground-truth information regarding the ac-
tual user signal uk−m:k makes knowledge of the noisy data gk−m:k superfluous.

The factor p (ik−m:k|uk−m:k) in this equation can be determined as follows.
Based on the robot behaviour encoded as xk and the actual interface signals uk

the user gives, the probability function over ik−m:k becomes [2]:

pk (ik−m+1:k|uk−m+1:k) = η · puser (uk|ik−m+1:k, uk−m+1:k−1)

·
∑

ik−m

(
pprocess (ik|ik−m:k−1, uk−m:k−1)

· pk−1 (ik−m:k−1|uk−m:k−1)
)

(2)
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where:

1. pk−1 is the a priori distribution over user plans, given previous user signals
uk−m:k−1 = {uk−m, · · · , uk−1}. It reflects the belief in the different user
plan hypotheses prior to the robot having moved and prior to having taken
new user signals into account.

2. puser is the user model, which expresses the likelihood that the user gives
the observed interface signal uk, given that the user has had intent evolu-
tion ik−m+1:k, and given previous user signals uk−m+1:k−1.

3. pprocess is the plan process model, which determines both the shape and
the probability of a user plan ik at time k, given that the user has had
intent evolution ik−m:k−1.

4. pk is the a posteriori distribution over user intents, i.e. the probability of
the different user plans after user signals and robot motion have been taken
into account.

5. η is a scale factor to normalise the probability distribution.

This framework will be explained further in the next section.

3 Application to robotic wheelchairs

Various experiments have been performed with a BCI on our robotic wheelchair
in the framework of the European project MAIA [4]. In this paper, we present an
experiment where we first evaluate the performance of a BCI user who directly
controls a simulated wheelchair. Secondly, it is verified whether the proposed
Bayesian plan recognition algorithm can estimate a richer representation of the
task the robot should execute.

To evaluate the control performance of the BCI user, the BCI user was
asked to execute straight line paths to different goal locations with a simulated
wheelchair (see Fig. 1), where the user is in full control of the wheelchair.

The simulator selects a goal position at random, and indicates this to the
user via a line from the robot pose to the goal position. This way, ground truth
regarding user plans is known. The user can give three commands with the BCI:
left (turning 0.1 rad counterclockwise), forward (moving 0.2 m forward), and
right (turning 0.1 rad clockwise). The simulator considers a goal position to be
reached if the robot comes within a circle with radius rgoal = 0.5 m of the goal
position, after which a new goal position is immediately selected.1

For this setup, a user plan can be represented as a straight-line path from the
current robot location to a goal location. The set of goal positions is assumed

1This radius was chosen to ease navigation in simulation. For real navigation, this radius
may have to be smaller, e.g. for docking at a table. Given the difficulty of achieving goal posi-
tions with the chosen radius already (cf. Section 4), this indicates how difficult real wheelchair
navigation with a BCI can be.
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Fig. 1: The left figure shows the set of goal positions and the indication of the
goal position that the user should pursue. The right figure schematically depicts
the plan recognition process for a situation with 4 goal positions (explanation in
the text).

to be known a priori. The 24 crosses in Fig. 1 correspond to these global goal
positions.

Plan recognition then proceeds as depicted schematically in Fig. 1. At
startup, the probability function over user plan hypotheses ik is taken to be uni-
form. At time step k, the probability distribution pk (ik−m+1:k|uk−m+1:k) is first
predicted based on the plan process function pprocess (ik|ik−m:k−1, uk−m:k−1)
(this corresponds to the summation in Eq. 2 and to step 1 in Fig. 1). More
specifically, when the robot moves from state xk−1 to state xk, the straight
path between xk−1 and the j-th goal is transformed into the straight path be-
tween xk and the j-th goal. The j-th probability is completely transferred to
this new path.

Next, the user’s signal is taken into account using the user model. The
user model puser (uk|ik−m+1:k, uk−m+1:k−1) receives as input the plan to a goal
position, i.e. a straight path from the current pose to a goal position. The user is
assumed to first turn over the shortest angle in the direction of the goal location,
and then to move forward. The chosen user models are shown in Fig. 2. The user
model for commands left and right is a function of the previous angle tracking
error θrel, k−1 and of the current angle tracking error θrel, k (hence m = 2). The
user model for command forward is made dependent on the distance to the
subgoal dsubgoal and the current angle tracking error θrel, k, where its likelihood
decreases as the distance to the goal decreases. The probability distribution
pk (ik−m+1:k|uk−m+1:k) is calculated for each of the possible user signals uk

(this corresponds to the multiplication of user model and summation in Eq. 2
and to step 2 in Fig. 1).

In a final step, the actual BCI signals are taken into account (this corresponds
to Eq. 1 and to step 3 in Fig. 1). The BCI adopted in this experiment is
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Fig. 2: This figure shows a user model for left and forward buttons. The like-
lihood function for left signals is modelled to be a function of the previous and
current tracking error θrel, k−1 and θrel, k, and the forward likelihood function
depends on the distance to the goal and on the current angle tracking error
θrel, k.

noninvasive, and consists of a cap with 64 electrodes measuring the EEG signals
g of the user. The BCI user generates different EEG patterns by performing
different mental tasks, such as the imaginary preparation to move the left hand
or performing non-trivial arithmetics. At this moment, three different discrete
commands can be discerned this way (corresponding to commands left, right
and forward). This classification occurs at a constant rate of 2 Hz, and yields a
probability distribution p

(
uk|gk−m:k

)
over the discrete set of commands u.

In order to navigate, the interface class that has the maximum probability
is chosen to be sent as a control command to the robot. However, the plan
recognition algorithm adopts the full distribution p

(
uk|gk−m:k

)
to maintain a

probability distribution over user plans.

4 Experimental results with BCI

Fig. 3 shows several snapshots of trajectories executed by the BCI user. The per-
formance of the plan recognition algorithm is acceptable in that the actual user
plan is estimated rather well when the robot is near the goal. Even if the robot
is far from the goal, either the true goal position or some goal positions in its
neighbourhood are probable, and therefore decisions based on these probabilities
can be expected to yield correct assistive behaviour.

These results show that BCI users can manage to drive to any goal location
themselves. However, their path is not smooth and hence navigation assistance
can be beneficial. The plan recognition algorithm proposed in this paper seems
a promising way to take assistive actions. As shown in [2] for button interfaces,
the efficiency and accuracy of robot navigation can be increased this way.

5 Conclusions and future work

This paper presented a Bayesian plan recognition framework that can be adopted
with BCIs to more accurately estimate the task that assistive devices should
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Fig. 3: These 4 figures show snapshots of experiments with the wheelchair simu-
lator and a real BCI. The left figures (a) show the trajectory followed by the user.
Time steps are plotted along the followed trajectory at regular intervals. The
right figures (b) show the evolution of the probability function over time. The
horizontal line in the right figures represents the ground truth user plan. The
grey values in the right figures correspond to the probability of a user plan: the
darker a cell, the more probable the corresponding user plan is at that moment.

execute. When evaluating the performance of BCI users who directly control
a simulated wheelchair, it was found that BCI users can manage to reach any
position desired, but robotic assistance based on Bayesian plan recognition may
make navigation more accurate and efficient.
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