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Abstract. In this work we will give explicit formulae for the application
of Rosen’s gradient projection method to SVM training that leads to a very
simple implementation. We shall experimentally show that the method
provides good descent directions that result in less training iterations,
particularly when large precision is wanted. However, a naive kernelization
may end up in a procedure requiring more KOs than SMO and further work
is needed to arrive at an efficient implementation.

1 Introduction

Given a sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, linear penalty SVM
training seeks [1] to maximize the margin of a separating hyperplane by solving

min
1
2
‖W‖2 + C

∑
ξi s. t. yi(W ·Xi + b) ≥ 1− ξi, i = 1, . . . , N. (1)

However, a simpler dual problem is solved in practice, that of minimizing

W (α) =
1
2

∑
i,j

αiαjyiyjXi ·Xj −
∑
i

αi s.t. 0 ≤ αi ≤ C,
∑
i

αiyi = 0.(2)

The optimal weight W o can be then written as W o =
∑
αoi yiXi and patterns

for which 0 < αoi < C are called non–bounded support vectors (SVs) while those
for which αoi = C are called bounded SVs. The more widely used approach to
solve (2) is decomposition methods, where one iteratively selects working sets
made up of some α components while the others are kept fixed. The extreme
case of this approach corresponds to Platt’s SMO [2], where the working set has
size 2 and the corresponding minimization problem can be solved analytically.
This may lead to a large number of iterations being needed but, on the other
hand, since the corresponding weight updates are very simple, the total number
of kernel operations (KOs) may be reasonably small. Joachims’ SVM–Light
method [3] considers working sets of size q = 2l. When q = 2 it reduces to SMO,
but for larger q an analytic approach may not be possible, and some numerical
quadratic programming (QP) solver has to be used. When q > 2 SVMLight
usually requires less iterations than SMO but, as they are costlier, one may end
up with a larger number of KOs.
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A simpler alternative with potentially larger gains could be gradient descent;
however, the linear constraint

∑
i αiyi = 0 precludes this approach as the gradi-

ent may not define a feasible descent direction. The linear constraint disappears
if we consider an homogeneous classifier dropping the b term, but with the risk
of the final classifiers being less accurate. To avoid this, we may try to modify
the gradient to arrive at a feasible descent direction. A number of such gradient
projection methods have been proposed in the QP literature; examples of this
are the Spectral Projected Gradient or the Variable Projection methods; some of
them have been applied to SVM training (see [4] and the references there). They
are quite efficient procedures suitable in some cases for parallel implementations
that can be exploited to train large scale SVMs. Still, they have a markedly
numerical nature and, in particular, they seem to exploit only partially the very
simple nature of the SVM constraints.

In this work we shall consider Rosen’s gradient projection method, one of
the earlier projection proposals for QP that we describe in section 2, and show
in section 3 that its projection map can be expressed in closed form; while
not too deep, the required computations are somewhat involved and cannot be
given in a short paper. Thus, the overall procedure can be directly applied
without recourse to numerical procedures. and results in an easy to implement,
kernelizable method that provides better descent directions that, for instance,
SMO; in particular, and as we shall illustrate in section 4, it leads to models with
the same accuracy but requiring many less iterations to converge, particularly
when large precision is wanted. On the other hand, a naive implementation
might result in a larger number of KOs and, thus, in a slower method overall.
Therefore, a careful analysis is needed for a successful implementation, an issue
that requires further work and that we will not address here. The paper will
end with a short discussion.

2 Rosen’s Gradient Projection Method

We shall review here the main points of Rosen’s method [5] for gradient projec-
tion (see [6], chapter 10 for more details), in which a symmetric projection matrix
P is used to define a feasible projection P∇f of the gradient ∇f . Notice first
that since P 2 = P , it is easy to check that if d = −P∇f , then ∇f · d = −‖d‖2.
Thus, in order for d to be descent direction, it is enough that it be feasible. To
construct P we will consider a slightly more general problem than SVM training,
in which we want to solve

min
α

f (α) s.t. Θα ≤ θ, Φα = φ, (3)

where we assume α to be N–dimensional and that we have L and K inequal-
ity and equality constraints respectively, with corresponding matrices Θ and
Φ and right-hand side vectors θ and φ. Let us assume that the current α
is a feasible point for (3). We can separate the inequality constraints for α
into L1 binding ones and L2 non-binding ones by partitioning Θ and θ as
ΘT =

(
ΘT

1 ,Θ
T
2

)
, θT =

(
θT1 , θ

T
2

)
, with Θ1α = θ1 and Θ2α < θ2. Let us now
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define the N × (L1 +K) matrix MT =
(
ΘT

1 ,Φ
T
)

that corresponds to the bind-
ing constraints at α. If M has full rank, MMT is invertible and we shall use
P = I −MT

(
MMT

)−1
M as the projection matrix. It is easy to see that d

is also feasible, i.e., that Md = 0, i.e., Θ1d = 0 and Φd = 0, for we have
Md = −MP∇f (α) = −M

(
I −MT

(
MMT

)−1
M
)
∇f (α) = 0. Thus, d will

define a descent direction provided it is not 0. However, this may very well
be the case if we have already optimized on the binding components of α. If
so, we have 0 = P∇f (α) =

(
I −MT

(
MMT

)−1
M
)
∇f (α) = ∇f (α) + MTβ,

with β = −
(
MMT

)−1
M∇f (α). Now β is an (L1 + K)–dimensional vector

and consider its decomposition βT =
(
uT ,wT

)
into an L1–dimensional vector

u and a K–dimensional one w. Adding in the L2–dimensional vector v = 0,
we can write the preceding as 0 = ∇f (α) + ΘT

1 u + ΘT
2 v + ΦTw, which is just

the gradient of the Lagrangian of (3) associated to the multipliers u, v and w.
Moreover, we obviously have vt(Θ2α− θ2) = 0 and since the Θ1 constraints are
binding, ut(Θ1α − θ1) = 0 also holds. Hence, if u ≥ 0, the current α, u, v and
w would satisfy the KKT conditions and we would have solved (3) .

On the other hand, if α does not solve (3), there will be at least one negative
multiplier uj which we can use to construct a slightly modified projection matrix
P̂ such that d̂ = −P̂∇f (α) is improving and feasible. More precisely, we define
Θ̂1 as the matrix obtained deleting in Θ1 the row corresponding to uj and set now

M̂T =
(

Θ̂T
1 ,Φ

T
)

. Just as before we can construct now a new projection matrix

P̂ = I−M̂T
(
M̂M̂T

)−1

M̂ , and it turns out that d̂ = −P̂∇f(α) also defines an
improving and feasible direction. The slightly long proof can be found in chapter
10 of [6]; a simpler one can be given in the concrete case of SVM training as a
consequence of the explicit formulae for the P and P̂ projections that we present
next.

3 Rosen’s method for SVM Training

It is clear that the SVM minimization problem is a particular case of (3) and,
in the notation of the previous section, the SVM box constraints can be written
in terms of ΘT =

(
−ITN , ITN

)
and θT =

(
0N

T , C1N
T
)

while for the equality
constraint we use ΦT = yT and φ = 0. Here IN ,0N and 1N stand for the N-
dimensional identity matrix and the zero and one vectors. At a given feasible α
we will have two kinds of binding constraints: a certain number N0 of the form
αi = 0 and a number NC of the form αi = C. The corresponding Θ1 and θ1
matrix and vector become then ΘT

1 =
(
−ITN0

, ITNC

)
and θT1 =

(
0TN0

, C1TNC

)
; the

notation I reflects the fact that IN0 and INC
may no longer be identity matrices

as their rows correspond to the canonical vectors associated to the non-support
vectors and the bounded SVs respectively. In particular, MT =

(
ΘT

1 ,Φ
T
)

has a
dimension N × (N0 +NC + 1). Now it is easy to see that
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MMT =

 −IN0

INC

yT

( −ITN0
ITNC

y
)

=

 IN0 0N0NC
−yN0

0NCN0 INC
yNC

−yTN0
yTNC

N

 ,

where 0ab denotes a zero a×b matrix. (MMT )−1 can be explicitly computed by
block matrix inversion, after which we can arrive to P ′ = MT

(
MMT

)−1
M and

then to the projection matrix P = IN−P ′. While the intermediate computations
are somewhat involved, the final form of the Pij components of P is very simple,
namely, Pij = δij−yiyj/N if i, j ∈ J and 0 otherwise, where J is the index set of
the non–bounded support vectors, N = |J | is the number of such SVs (i.e., those
for which 0 < αi < C) and δij denotes Kronecker’s delta. From this, the feasible
descent direction d is easily obtained as di = −∇f (α)i + yi

N
∑
j∈J yj∇f (α)j if

i ∈ J and 0 otherwise.
When this procedure leads to a d = 0, we have to remove from M a constraint

associated to a negative multiplier ui. If we let now J0 and JC be the index
sets of the non–support vectors and of bounded SVs respectively, the multiplier
values can be shown to be

ui =
{
∇f (α)i −

yi

N
∑
k∈J yk∇f (α)k ∀i ∈ J0,

−∇f (α)i + yi

N
∑
k∈J yk∇f (α)k ∀i ∈ JC

}
. (4)

We have to decide which negative mutiplier to choose; it can be shown (we omit
the details) that the most negative one is also the one that violates most the
aproximate KKT conditions at the current α. Assuming the chosen index to be
p̂, computations similar to the previous ones give now P̂ik = δik − yiyk/(1 +N )
if i ∈ {p̂} ∪ J and 0 otherwise. Moreover, if i ∈ {p̂} ∪ J ,

d̂i = −∇f (α)i +
yi

1 +N
∑

k∈J∪{p̂}

yk∇f (α)k (5)

while it is 0 otherwise. Finally, once we have obtained the new descent di-
rection d, it is straightforward to compute the optimal dilation λ∗ that min-
imizes f(α + λd). Taking into account that f (α) = 1

2‖w‖
2 −

∑
i αi, where

w =
∑
i αiyixi, we can write f(α + λd) as a function Φ of λ, namely Φ(λ) =

f (α) + λ
(
wTz− s

)
+ 1

2λ
2‖z‖2, where z =

∑
i yidixi and s =

∑
i di. It is

easy to see that Φ(λ) has a minimum at λ′ = −(wTz− s)/‖z‖2. Note that
λ′ > 0 is guaranteed, since −

(
wTz− s

)
= −∇f · d > 0. However, this λ′

must be clipped so that the box constraints 0 ≤ αi + λdi ≤ C are not vio-
lated. This is done by choosing a new λ∗ so that λ∗ = min {λ′, λmax} , where
λmax = min

{
mini∈Q−

{
−αi

di

}
,mini∈Q+

{
C−αi

di

}}
, and Q± denote the index

sets of the non-bounded SVs whose d component is either greater or less than
zero [6]. If we are using d̂, additional terms C/d̂p̂ if αp̂ = 0 or −C/d̂p̂ if αp̂ = C
are required in the outer minimum.
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# SVs. # Iters.
Dataset SMO Rosen SMO Rosen Ratio

Titanic 69.3±9.5 92.0±11.3 143.5±20.9 141.4±23.9 1.01
Heart 82.5±5.4 83.4±5.1 149.8±31.5 65.6±6.3 2.28
Cancer 114.1±6.1 116.4±6.2 1431.5±407.3 592.1±93.0 2.42
Thyroid 25.3±5.7 24.8±5.5 213.5±73.9 70.5±23.2 3.03
Diabetes 264.9±7.3 266.5±7.4 360.1±55.0 181.3±9.8 1.99
Flare 480.7±11.5 513.1±17.2 608.7±141.7 339.8±50.8 1.79

Table 1: Average number of support vectors, number of iterations and ratio of
iterations needed by Rosen and SMO algorithms, with ε = 10−3.

4 Experimental results

We shall compare the performance of Keerthi’s Modification 2 for SMO [7] and
Rosen’s method over 6 of the datasets provided in G. Rätsch’s Benchmark Repos-
itory [8]. We employed the same experimental setup described in the data site;
in particular we used the 100 partitions provided (with about 40% training and
60% test patterns) to compute the final number of support vectors and the num-
ber of training iterations. We shall also give the ratio of iterations carried out
by SMO against the ones by Rosen. To do this, we train 1-SVMs with stan-
dard Gaussian kernels, making use of the C and σ parameters also given in the
data site. The stopping criterion of both algorithms is based on an absolute
ε-violation of the KKT conditions, which is the criterion used in state-of-the-art
SVM software like SVM-Light [3]. We give in tables 1 and 2 the results for
ε = 10−3 and ε = 10−6, respectively.

As it can be seen, the number of support vectors in the final models is
very similar for both methods, except for datasets titanic and flare. Even for
those 2 datasets we have checked that the test accuracies of both methods are
undistinguishable under a Wilcoxon rank-sum test at the 0.1 level, so Rosen’s
method is effectively converging to a point with at least the same accuracy as
the one given by SMO. Furthermore, the last column in table 1 shows that for
ε = 10−3, Rosen generally requires around 2 or 3 times less iterations than SMO.

If we look at the results for ε = 10−6 in table 2, now SMO needs about 2 or 3
times more iterations than in the previous case, whereas Rosen remarkably needs
very few more; thus, Rosen is now about 4 to 8 times faster than SMO in terms
of iterations. Even if for these 6 datasets an accuracy of ε = 10−3 is adequate
enough (note that the number of support vectors has changed very little between
both tables), this fact seems to imply that Rosen’s solution is somewhat more
robust and thus more suitable for problems where a strict accuracy is needed or
when we want to finish off the convergence of a first approximate solution.

5 Conclusions and further work

In this work we have shown that, when applied to SVM training, Rosen’s gradient
projection method can be written under closed formulae that lead to a simple
and efficient implementation. We have also shown that the resulting models
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# SVs. # Iters.
Dataset SMO Rosen SMO Rosen Ratio

Titanic 69.3±9.5 92.4±11.4 214.2±37.4 145.2±25.4 1.48
Heart 82.5±5.4 83.5±5.2 331.9±119.4 65.7±6.5 5.05
Cancer 113.9±6.1 116.4±6.3 4711.5±2704.7 596.0±95.2 7.91
Thyroid 25.3±5.7 24.8±5.5 519.2±222.3 70.6±23.4 7.35
Diabetes 264.8±7.3 266.5±7.4 730.1±193.1 181.7±9.7 4.02
Flare 481.2±11.3 513.2±18.2 1837.3±1677.0 394.6±80.4 4.66

Table 2: Average number of support vectors, number of iterations and ratio of
iterations needed by Rosen and SMO algorithms, with ε = 10−6.

have accuracies similar to those obtained by SMO while requiring less iterations
(particularly when a strict convergence is desired), as its working sets are bigger
and their descent directions seem to be better. Moreover, the method ends up
using the non–bounded support vectors as the working set, self adjusting thus
to a shrinking strategy, and our experiments point out that it can speed up the
final phases of other, simpler algorithms such as SMO.

However, and as it is often the case with other decomposition methods with
large working sets, its implementation must be quite careful if a large number of
kernel operations is to be avoided. This needs further study and a first possibility
is to apply an adequate caching scheme for kernel operations. For instance, the
method naturally lends itself to a training setup similar to Platt’s type I and II
iterations, as it automatically detects whether the objective function has been
minimized over a given working set. Finally, there have been many proposals
for efficient gradient projection methods in the QP literature. Thus, our work
suggests that it may be worthwhile to explore whether simplifications similar to
the one proposed here are possible for some of them. We are currently pursuing
these and other related research topics.

References

[1] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

[2] J.C. Platt. Fast training of support vector machines using sequential minimal optimization.
Advances in Kernel Methods - Support Vector Machines, pages 185–208, 1999.

[3] T. Joachims. Making large-scale support vector machine learning practical. Advances in
Kernel Methods - Support Vector Machines, pages 169–184, 1999.

[4] Y.H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic pro-
grams subject to lower and upper bounds. Math. Program., 106:403–421, 2006.

[5] J. B. Rosen. The gradient projection method for nonlinear programming, i: Linear con-
straints. SIAM Journal on Applied Mathematics, 8:181–217, 1960.

[6] M. Bazaraa, D. Sherali, and C. Shetty. Nonlinear Programming: Theory and Algorithms.
Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, 1992.

[7] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murphy. Improvements to
platt’s smo algorithm for svm classifier design. Neural Computation, 13(3):637–649, 2001.
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