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Abstract. An accurate quantitative definition of financial crisis re-
quires a universal and robust scale for measuring market shocks. Follow-
ing Zumbach et al. (2000) and Maillet et Michel (2003), we propose a
new quantitative measure of financial disturbances, which captures the
heterogeneity of investor horizons – from day traders to pension funds.
The indicator resides on a multi-resolution analysis of market volatility,
each scale corresponding to various investment horizons and different data
frequencies. This new risk measure, called “Wavelet-heterogeneous Index
of Market Shocks” (WhIMS), is based on the combination of two methods:
the Wavelet Packets Sub-band Decomposition and the constrained Inde-
pendent Component Analysis (See Kopriva and Seršić, 2007 and Lu and
Rajapakse, 2005). We apply this measure on the French stock markets
(high frequency CAC40) to date and gauge the severity of financial crises.

1 Introduction

A clear understanding of financial stability requires an accurate measure of fi-
nancial turbulences. It is important to know when such pressure occurs and
what its intensity is to detect, identify and compare the severity of different
crises. The objective of this paper is to propose a new quantitative measure of
financial crises, which we called the WhIMS (for Wavelet-heterogeneous Index
of Market Shocks). The WhIMS is computed in two steps. The first one is
a combination of Wavelet Packets and a Subband Decomposition Independent
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Component Analysis (See [4] and [5]). The difference with the traditional ICA
is that this method allows us to get components truly independent and to in-
troduce a constraint in the signals to reduce the data dimension. Moreover, this
tool is more appropriate than the Principal Component Analysis when data are
non linear and non Gaussian. The second step consists in fitting cumulative
density function of Independent Components with a Generalized Pareto Distrib-
ution (GPD) based on L-moments estimation method (which are order-statistic
cumulants). Indeed, this step guarantees the WhIMS not to depend anymore on
the hypothesis of Log-normality of volatilities.

The measure of market disturbances we propose is a refinement of the so-
called Scale of Market Shocks (SMS) by Zumbach et al. [8] and the Index of
Market Shocks (IMS) by Maillet and Michel [6]. Indeed, the WhIMS would
overcome few shortcomings of the IMS recognized by their authors. First, the
method of estimating volatilities at different scales by varying sampling fre-
quency can lead to heterogeneous estimation errors and incomparable estimates.
Second, the definition of independent components based on linear correlations
is too restrictive when factors are not symmetrically distributed.

The motivation behind the wavelet decomposition is the existence of traders
with different time horizons (see e.g. [2]). Short-term traders, such as day-
traders, are constantly watching the market; they re-evaluate the situation and
execute transactions at a high frequency horizon. Long-term investors, such
as pension funds, may look at the market less frequently. Sometimes, price
movements may have a certain influence on the timing of both day-traders and
long-term investors’transactions and investment decisions. The WhIMS gauges
the severity of these markets fluctuations that impact both day-traders, mutual
funds and pension funds.

The outline of this paper is as follows. Section 2 introduces the Independent
Component Analysis and the Wavelet Packet Sub-band Decomposition. Section
3 presents the Generalized Pareto Distribution estimated based on L-moments
estimation method. Section 4 explains the WhIMS computation. Section 5
presents empirical estimations.

2 Scale-by-scale Decomposition of Volatility

The method of Independent Component Analysis (ICA) is well-known in Signal
Processing and applied in various field such as biomedicine, speech and telecom-
munication signals. It is the most used method for Blind Source Separation
(BSS). However, the mobilization of the ICA leads to several limits. Indeed,
Chang and Zhang [1] determine that the independence property of the extract-
ing independent components is not always verified which could bias our re-
sults. We combine two decomposition and factor analysis methods: the Wavelet
Packet Sub-band Independent Composition Analysis (WPSD-ICA) and the con-
strained Independent Component Analysis (cICA). The result of this mix gives
the WPSD-cICA.

Our approach to multi-scale analysis is based on the wavelet transform of
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the original time series of stock returns. The definition of WhIMS resides on the
estimation of the vector of volatilities at different scales σ(1), ..., σ(m). A natural
tool for this purpose is wavelet analysis. It is widely used in signal processing
in order to decompose a given time series x (t) called “signal” into a hierarchical
set of approximations and details (multi-resolution analysis), and to decompose
energy of the signal on scale-by-scale basis.

Any decomposition is based on the so-called wavelet mother function Ψ and
the associated wavelet father function Φ. Ψ is used to define the details while
Φ is used to define approximations. Then, the wavelet transform C consists in
calculating a ”resemblance index” between the signal and the wavelet function
located at position b and of scale a :

C (a, b) =

+∞∫
−∞

x (t)
1√
a
Ψ

(
t − b

a

)
dt. (1)

This transformation can be applied at continuous or discrete scales. For a
properly chosen wavelet function, the synthesis of the original signal can be done:

x (t) =
N∑

j=1

K∑
k=1

C (j, k) Ψj,k (t) , (2)

with j corresponding to decomposition levels and k to positions of wavelet
on the time axis.

3 Estimation of a GPD with a Generalized Method of TL-
moments

Recent attempts for modelling distributions in a multivariate framework are
built on the order-statistics using L-moments. One of their main advantage over
the conventional (C-)moments is that their empirical counterparts are less sen-
sitive to the effects of sampling variability. They are shown to provide more
robust estimators of higher moments that the traditional sample moments and
have then found wide applications in fields where extreme events matter, such as
meteorology, hydrology and also earthquake analysis with the Richter Scale [7].
More precisely, L-moments are defined as certain linear functions of the Prob-
ability Weighted Moments and can characterize a wider range of distributions
compared to the usual moments.

To compute the WhIMS, we uses a GPD estimated with Generalized Method
of TL-moments [3]. The distribution of a GPD is defined by three parameters:
υ ∈ IR, the location parameter, α ∈ IR+, the scale parameter and ξ ∈ IR the tail
index. The GPD distribution of the WhIMS block maxima, denoted here σ̂ for
the sake of simplicity, is given by:

Gξ(σ̂) =

 1 −
[
1 + ξ (�σ−υ)

α

]−ξ−1

if ξ �= 0

1 − Exp
[
− (�σ−υ)

α

]
otherwise,
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for every σ̂ ∈ D2, defined by:

D2 =


] −∞; υ − α

ξ [ if ξ < 0
IR if ξ = 0
]υ − α

ξ ; +∞[ if ξ > 0.

This allows us to deduce the cumulants of order 3 and 4 for a GPD normalized
distribution: {

κ3 = 2α3(1+ξ)
(1−ξ)3(1−2ξ)(1−3ξ)

κ4 = 3α4(3+ξ+2ξ2)
(1−ξ)4(1−2ξ)(1−3ξ)(1−4ξ) − 3.

(3)

Moreover, the first three TL-moments, as a function of the three character-
istic parameters of a GPD distribution, are given, for every (s, t) ∈ IN2, by:

λ
(s,t)
1 = υ − ξ

α + (1+s+t)!
t!

Γ(t−ξ+1)
Γ(2+s+t−ξ)

ξ
α

λ
(s,t)
2 = (2+s+t)!

2(t+1)!
Γ(t−ξ+1)

Γ(3+s+t−ξ)α,

λ
(s,t)
3 = (3+s+t)!

3(t+2)!
Γ(t−ξ+1)

Γ(4+s+t−ξ) (1 + ξ)α,

(4)

where λ
(s,t)
r is the r-th TL-moment of truncation order (s, t), υ ∈ IR the location

parameter, α ∈ IR+ the scale parameter, ξ ∈ IR the tail index and Γ(a) =∫ +∞
0

ta−1e−tdt is the Gamma function.

4 The Wavelet-heterogeneous Index of Market Shocks
(WhIMS) Computation

The WhIMS formula is:

WhIMSt = −α
K∑

i=1

{
wk log2

[
1 − F

(
σ2

i

)]}
(5)

where F (.)is the cumulative density function, σi represents each indepen-
dent factors of volatilities at different time scales, wk is the weight of each Inde-
pendent Components obtain from a Wavelet Packets Sub-band Decomposition
constrained Independent Component Analysis, and α a scaling constant.

Finally, the algorithm of computing WhIMS can be summarized as follows.
Firstly, on a moving window of fixed length (equal to a power of two) perform
the Wavelet Packet Subband Decomposition of returns; secondly, we reconstruct
the trajectories of returns for each scale; thirdly, we transform data for all scales
to log-squared returns; then, we compute constrained Independent Components
and their weights; next, we fit the generalized Pareto distribution for the tails
of each Independent Component; and finally, we compute the WhIMS using
formula (5);

The next section contains empirical results obtained for the French stock
market data.
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5 Empirical Results

We estimate the WhIMS using CAC40 high frequency (15 minutes intervals) data
between 1997 and 2007. This period takes account of two financial major events:
the Asian crises of 1998 and the crises of the technological values during 2000
until 2003. Below, you can see an illustration of our data. After decomposing the
source signal, we build new trajectories of returns at different time scales. Each
level of decomposition j corresponds to a frequency of 2j days. Our objective
is to identify regimes of financial crises that are defined when our risk measure
exceeds the arbitrary threshold corresponding to a 90% confidence level. Next,
we applied the WhIMS algorithm to our data in order to detect and identify
market turbulences during the studying period using the formula (5). Figure 1
shows the evolution of the CAC40 index and the computed WhIMS. The WhIMS
appears relatively temperate during the period 2000-2003 and the ”death of the
volatility”, with a rebirth of volatility in the recent months corresponding to the
latest credit events.

6 Conclusion

We proposed a revised version of the Index of Market Shocks, based on a
multi-resolution analysis of market volatility. The indicator aims to characterize
volatility as perceived by different types of market agents who have various in-
vestment horizons. It can be computed both for large samples of low-frequency
data and high frequency data. The algorithm of computing WhIMS is based
on wavelet decomposition combined with a factor analysis, introduced as tools
to decompose volatility in both time and scale and to identify volatility factors
at each scale. The WhIMS does not rely on the log-normality of these factors,
making it more robust to distributional properties of the data. We established
a quantitative definition of crises based on the distribution of the WhIMS to
date events on financial markets, as well as to compare the relative severity of
these crises. Further researches could extend the WhIMS to different markets
measuring contagion or interdependence between them and justify theoretically
the multi-resolution analysis of market volatility.
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Fig. 1: Evolution of the CAC40 Index and the Wavelet-heterogeneous Index of
Market Shocks

Sources: Euronext. CAC40 30 minutes intraday data during January 2nd, 1997
to December 31st, 2007. The chart on the top represents the evolution of the
CAC40 in brown and crises in gray (WhIMS superior to the threshold of 3 which
corresponds to the 90% highest values of the WhIMS). The chart on the bottom
represents the WhIMS applied to CAC40 in black line and the 90% threshold in
red line. Computation by the authors.
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