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Abstract. We present a novel method for structure-preserving dimen-
sionality reduction. The Exploration Machine (Exploratory Observation
Machine, XOM) computes graphical representations of high-dimensional
observations by a strategy of self-organized model adaptation. Although
simple and computationally efficient, XOM enjoys a surprising flexibility
to simultaneously contribute to several different domains of advanced ma-
chine learning, scientific data analysis, and visualization, such as structure-
preserving dimensionality reduction and data clustering.

1 Motivation

The exceedingly growing amount of high-dimensional information stored in com-
puter-accessible data bases and web resources raises the question of how to
organize and extract useful knowledge from this abundant material. Here, a key
issue is structure-preserving data reduction which has moved into the focus of
interest as an issue of high-priority research efforts. Structure-preserving data
reduction can frequently be accomplished by two alternative approaches, namely
data partitioning in the sense of ‘clustering’ and dimensionality reduction often
referred to as ‘embedding’.

In this paper, we introduce a novel algorithm called ‘Exploration Machine’
(Exploratory Observation Machine — XOM) that unexpectedly can approach both
domains from a unified viewpoint within a single computational framework. Af-
ter explaining the XOM algorithm, we present applications to the analysis of mul-
tidimensional biomedical data from different real-world domains: whole-genome
microarray gene expression experiments and functional MRI analysis. These
two different examples convey XOM’s capability to simultaneously contribute to
the aforementioned different challenges of pattern recognition, namely structure-
preserving dimensionality reduction and clustering.

2 Algorithm

The Exploration Machine (XOM) algorithm can be resolved into three steps. For
simplicity, let us first consider N real-valued input vectors r; in the ‘observation
space’ O, each of dimensionality D.

Step 1: Define the topology of the input data in the observation space O by
computing distances d(r;,r;) between the data vectors r;,i € {1,...,N}. This
step is omitted, if the input data is already given as a set of distances between
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input data items.

Step 2: Define a ‘hypothesis’ on the structure of the data in the embedding
space E, represented by ‘sampling’ vectors x; € E, k € {1,..., K}, K € IN, and
randomly initialize an ‘image’ vector w; € E, ¢ € {1,..., N} for each input vec-
tor r;. Typical choices for sampling distributions are: for structure-preserving
visualization, use uniform distribution (e.g. in a 2D square, as used in fig. 1); for
data clustering use several Gaussian distributions with different centers (e.g. lo-
cated on the nodes of a regular simplex, as used in fig. 2.)

Step 3: Reconstruct the topology induced by the input data in O by moving
the image vectors in the embedding space E using the computational scheme of
a topology-preserving mapping 1. The final positions of the image vectors w;
represent the output of the algorithm.

In the third step of the XOM algorithm, the topology-preserving mapping
T can be considered as a free variable. A simple choice for T is Kohonen’s self-
organizing map algorithm [1], e.g. in its basic incremental version. Here, the
image vectors w; are incrementally updated by a sequential learning procedure.
For this purpose, the neighborhood couplings between the input data items are
represented by a so-called cooperativity function . A typical choice for v is a
Gaussian / 2

Bl 1), 010) = xp (LB, 0
In the XOM context, r'(x(t)) represents the ‘best-match’ input data vector.
For a randomly selected sampling vector x(¢) € E, this best-match input data
vector is identified by ||x — wy || = min, ||x — w||. Once the best-match input
data vector r'(x(t)) has been identified, the image vectors w, are updated in a
sequential adaptation step according to the learning rule
wi(t+ 1) = wi(t) + e(t) ¥(r, ' (x(t)), o (1)) (x(t) — wx(t)), (2)
where t represents the iteration step, €(¢) a learning parameter, and o(t) a mea-
sure for the width of the neighborhood taken into account by the cooperativity
function . In general, o(t) as well as €(t) are changed in a systematic manner
depending on the number of iterations ¢ by some appropriate annealing scheme,
e.g. an exponential decay with ¢, as used in the examples of this paper. The
algorithm is terminated, once a problem-specific cost criterion is satisified, or a
maximum number of iterations has been completed.

Although the above computational scheme formally resembles Kohonen’s self-
organizing map algorithm, there are deep differences between both approaches.
Specifically, the meaning of the variables r, w, and x completely differs in the
Exploration Machine: Whereas in Kohonen’s algorithm the sampling vectors x
represent the input data, this role is attributed to the vectors r in XOM. As an
important consequence, in contrast to Kohonen’s self-organizing map algorithm,
each image vector w is attributed to its own specific input data vector. Hence,
no implicit approximation of input data items by image vectors is involved.
Instead, sampling and adaptation of the image vectors is entirely restricted to the
embedding space. In other words, XOM completely inverts the role of input data
and structure hypotheses, given the conventions of topology-preserving mappings
as known from the literature. These differences induce that (i) the dynamics
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of self-organization is formulated directly in the embedding space E in which
structure formation occurs, and not indirectly via movements in the space O
of the high-dimensional input data. This can lead to substantial computational
savings, see below. Second (ii), the coupling of the movements of the image
vectors is now governed by the actual distance topology of the input data and
not by the possibly inaccurate structure hypothesis as in existing approaches!.
As in topology-preserving mappings, we still need a structure hypothesis. But
now it is succinctly spelled out in the choice of the sampling distribution and its
underlying space E that govern the exploration movements of the image vectors
without affecting their interactions.

The new scheme endows XOM with a surprising flexibility to contribute to
different domains of scientific data analysis and visualization, such as clustering,
see below. It also induces favorable algorithmic properties: In particular, the
formulation of the dynamics in the embedding space entails a substantial reduc-
tion of computational complexity in comparison to the self-organizing map, as
the best-match search in each iteration step does not require computational op-
erations in the high-dimensional input data space, but now occurs in the usually
low-dimensional embedding space. This leads to considerable savings in compu-
tation time when compared to the self-organizing map, specifically in the case
of high-dimensional real-world data, such as for the embedding example of the
whole-genome gene expression data in fig. 1.

Although the Exploration Machine has originally been invented as a novel
method for structure-preserving dimensionality reduction, it is essential to realize
that it can be applied to other domains of data analysis as well. Data clustering,
for example, can be performed by exploiting the flexibility to specify arbitrary
structure hypotheses in step 2 of the algorithm. Here, the key idea is to simply
select the sampling vectors from non-uniform distributions, e.g. from a mixture
of several (e.g. Gaussian) distributions centered at different positions in the
embedding space. After running the XOM algorithm, the image vectors can be
assigned to these distributions, e.g. by computing and comparing the distances of
the image vectors to the centers of the respective distributions. For instance, in
the clustering example of section 3, fig. 2 below, we used a structure hypothesis
of 36 univariate 35-dimensional Gaussian distributions located on the vertices of
a regular simplex in IR3®.

For further analyses, extensions, and variants of the Exploration Machine,
such as related to computational complexity, convergence properties, free param-
eter selection, supervised learning, analysis of non-metric data, out-of-sample
extension, and constrained incremental learning, we refer to [2].

3 Experiments

Visualization of Genome-Wide Expression Patterns: We used the Ex-
ploration Machine to visualize genome-wide expression patterns by structure-

LA typical choice for defining such structure hypotheses in topology-preserving mappings
is to use two-dimensional, discrete, periodic (e.g. quadratic or hexagonal) grids.
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Fig. 1: Visualization of genome-wide expression profiles by the Exploration Ma-
chine. (A) Genome map created by nonlinear XOM embedding of 2467 79-
dimensional gene expression profiles in the yeast Saccharomyces cerevisiae ob-
tained from DNA microarray hybridization experiments, data published in [3].
(B) Enlarged section of the genome map depicted by the inset in (A).

preserving dimensionality reduction. Fig. 1 (A) shows a genome map created by
nonlinear XOM embedding of gene expression profiles in the yeast Saccharomyces
cerevisiae obtained from image data of DNA microarray hybridization experi-
ments. The data is taken from [3], where it is described in detail. It includes
2467 79-dimensional vectors representing concatenated time courses obtained
for all genes functionally annotated in the Saccharomyces Genome Database [4].
The expression profiles were average-corrected and scaled to unit variance. —
Each of the 2467 points on the map represents the 79-dimensional expression
profile of a single gene. Specific groups of genes related to each other with re-
spect to their biological function according to a cluster annotation by Eisen et
al. [3] are color-coded and labeled by numbers. In detail: ‘1’: spindle pole body
assembly and function, ‘2’: the proteasome, ‘3": mRNA splicing, ‘4’: glycolysis,
‘5’: the mitochondrial ribosome, ‘6’: ATP synthesis, ‘7’: chromatin structure,
‘8’: the ribosome and translation, ‘9’: DNA replication, and ‘10’: the tricar-
boxylic acid cycle and respiration. Fig. 1 (B) shows the enlarged section of the
genome map depicted by the inset in (A). For the practical use of XOM genome
maps as presented in Fig. 1, appropriate graphical user interfaces can easily be
implemented that supply additional annotation information on the map when
needed. Correspondingly, plots of the individual expression profiles can easily
be projected onto the map. — A notable result from the visualization in fig. 1 is
that genes of similar biological function are collocated on the map. We quanti-
tatively compared our result of fig. 1 with the results obtained by several other
embedding algorithms using Sammon’s error function [5] as a criterion for em-
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Fig. 2: Exploration Machine cluster analysis in human brain mapping, based on
a functional MRI visual stimulation experiment. (A) Cluster assignment maps.
White regions denote pixels assigned to a respective cluster. (B) Cluster-specific
prototypical time-series, i.e. ‘codebook vectors’ and cluster-specific correlation
coefficients between codebook vectors and stimulus function. Cluster numbers
correspond to assignment maps in (A).

bedding quality: We obtained error values of 5.91-10° (1.00) for XOM, 6.50-10°
(1.10) for Sammon’s mapping, 6.56 - 10° (1.11) for Principal Component Anal-
ysis (PCA), and 7.24 - 10° (1.22) for SOM, where numbers in brackets indicate
relative values compared to the XOM result. Computation times were 72 s for
XOM, 216 s for Sammon’s mapping, 2 s for PCA, and 881 s for SOM. Our results
indicate XOM’s applicability to provide fast and concise structure-preserving vi-
sualization of large biomedical data collections, as exemplified by whole-genome
microarray data.

Functional MRI for Human Brain Mapping: In the previous section,
the Exploration Machine has been successfully applied to structure-preserving
dimensionality reduction. To demonstrate its applicability to data clustering
as well, we performed exploratory functional MRI analysis for human brain
mapping in a visual stimulation experiment. Here, the basic idea is to group
pixels according to their similarity of pixel-specific signal dynamics time-series.
Experimental protocols for image acquisition of this data set have been published
in [6]. Each functional MRI slice includes approximately 5—10-10% pixels, with a
number of 98 acquisitions over a time of 300 s. Thus, the task is to cluster several
thousand time-series vectors in IR”. Figures 2 (A) and (B) show an example of
cluster assignment maps and corresponding cluster-specific prototypical signal-
time series, so-called ‘codebook vectors’, that can be interpreted as the average
time-series of all the pixels belonging to a specific cluster. As can be seen
from the figures, clusters 21 and 23 clearly identify task-related activity in the
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visual cortex, reflected by the high correlation between codebook vectors and the
box-car shaped stimulus function used in this experiment. Cluster 24 includes
pixels representing cerebrospinal fluid of internal ventricles, whereas cluster 4
is indicative for a through-plane motion artifact. A quantitative ROC analysis
revealed areas under ROC curves of 0.984 4+ 0.03 for XOM, 0.983 + 0.02 for
Minimal-Free-Energy VQ [6], and 0.979 £ 0.02 for SOM for the detection of
task-related activation. We conclude that our method is well-suited to perform
high-dimensional cluster analysis of functional MRI data yielding competitive
results comparable to those obtained by established methods, e.g. [6].

4 Conclusion

In this paper, we have introduced the Exploration Machine as a novel learning
approach which can be applied to the analysis of multidimensional data. We
have shown that XOM is capable of visualizing whole-genome microarray gene
expression data and that it can be used for clustering of functional MR im-
age time-series in human brain mapping. For both applications, we found that
XOM yields competitive results when compared to established methods known
from the literature. It can be shown that XOM introduces a generalization of
various previous learning approaches, such as [7], [8], i.e. XOM includes these
as special cases within a general framework that proposes to invert topology-
preserving mappings as o fundamental pattern recognition approach. As XOM
can simultaneously contribute to different domains of machine learning, namely
both dimensionality reduction and clustering, it may serve as a useful novel ver-
satile method for exploratory data analysis throughout science and engineering.
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