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Abstract. We introduce the Exploration Machine (Exploratory Ob-
servation Machine, XOM) as a novel versatile method for the analysis of
multidimensional data. XOM systematically inverts structural and func-
tional components of so-called topology-preserving mappings. It provides
a surprising flexibility to simultaneously contribute to complementary do-
mains of unsupervised learning for exploratory pattern analysis, namely
both structure-preserving dimensionality reduction and data clustering.
We demonstrate XOM’s applicability to synthetic and real-world data.

1 Introduction

To extract useful knowledge from high-dimensional observations, such as pro-
vided by multidimensional imaging data, scientists need to concisely visualize
hidden regularities in such data by methods of intelligent data reduction. A
classical machine learning approach to this problem has been contributed by so-
called ‘topology-preserving mappings’ which have been pioneered by Kohonen’s
discovery of the Self-Organizing Map (SOM) algorithm almost three decades ago.
This approach has found wide-spread use throughout science and technology for
both visualization and partitioning of high-dimensional data. However, a sig-
nificant drawback of the SOM is that it cannot accurately preserve an eventual
cluster structure prevalent in the data as pointed out in [1].

In this contribution, we propose to systematically reverse the data-processing
workflow in topology-preserving mappings in order to alleviate this problem. By
simply exchanging functional and structural components of topology-preserving
mappings, we obtain the Exploration Machine (Exploratory Observation Ma-
chine, XOM) as a novel computational framework for both structure-preserving
dimensionality reduction and data clustering. After introducing the XOM algo-
rithm, we analyze its applicability to both synthetic and real-world data.

2 The Exploration Machine Algorithm

The Exploration Machine (XOM) algorithm can be resolved into three steps. For
simplicity, let us first consider N real-valued input vectors ri in the ‘observation
space’ O, each of dimensionality D.
Step 1: Define the topology of the input data in the observation space O by
computing distances d(ri, rj) between the data vectors ri, i ∈ {1, . . . , N}. This
step is omitted, if the input data is already given as a set of distances between
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input data items.
Step 2: Define a ‘hypothesis’ on the structure of the data in the embedding
space E, represented by ‘sampling’ vectors xk ∈ E, k ∈ {1, . . . ,K},K ∈ IN,
and randomly initialize an ‘image’ vector wi ∈ E, i ∈ {1, . . . , N} for each input
vector ri. Typical choices for sampling distributions are: for structure-preserving
visualization, use a uniform distribution (e.g. in a 2D square, as used in figs. 2 and
3A,B); for data clustering use a mixture of several (e.g. Gaussian) distributions
with different centers, e.g. located on the vertices of a regular simplex.
Step 3: Reconstruct the topology induced by the input data in O by moving
the image vectors in the embedding space E using the computational scheme of
a topology-preserving mapping T . The final positions of the image vectors wi

represent the output of the algorithm.
In the third step of the XOM algorithm, the topology-preserving mapping

T can be considered as a free variable. Besides topographic vector quantizers,
e.g. [2], a simple choice for T is Kohonen’s self-organizing map algorithm [1],
e.g. in its basic incremental version. Here, the image vectors wi are incremen-
tally updated by a sequential learning procedure. For this purpose, the neigh-
borhood couplings between the input data items are represented by a so-called
cooperativity function ψ. A typical choice for ψ is a Gaussian

ψ(r, r′(x(t)), σ(t)) := exp
(
− (r− r′(x(t)))2

2σ(t)2

)
. (1)

In the XOM context, r′(x(t)) represents the ‘best-match’ input data vector.
For a randomly selected sampling vector x(t) ∈ E, this best-match input data
vector is identified by ‖x − wr′‖ = minr ‖x − wr‖. Once the best-match in-
put data vector r′(x(t)) has been identified, the image vectors wr are updated
in a sequential adaptation step according to the learning rule wr(t + 1) =
wr(t) + ε(t)ψ(r, r′(x(t)), σ(t)) (x(t) − wr(t)), where t represents the iteration
step, ε(t) a learning parameter, and σ(t) a measure for the width of the neigh-
borhood taken into account by the cooperativity function ψ. In general, σ(t)
as well as ε(t) are changed in a systematic manner depending on the number
of iterations t by some appropriate annealing scheme, e.g. an exponential decay
with t, as used in the examples of this paper. The algorithm is terminated, once
a problem-specific cost criterion is satisified, or a maximum number of itera-
tions has been completed. – Although the above computational scheme formally
resembles Kohonen’s self-organizing map algorithm, both approaches actually
describe fundamentally different concepts. Specifically, the meaning of the vari-
ables r, w, and x completely differs in the Exploration Machine: Whereas in
Kohonen’s algorithm the sampling vectors x represent the input data, this role
is attributed to the vectors r in XOM, i.e. XOM completely inverts the role of in-
put data and structure hypotheses, given the conventions of topology-preserving
mappings as known from the literature. For detailed analyses, extensions, and
variants of the Exploration Machine, such as related to computational complex-
ity, convergence properties, free parameter selection, supervised learning, anal-
ysis of non-metric data, geodesic coordinates, out-of-sample extension, growing
XOM variants, and constrained incremental learning, we refer to [3].
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Fig. 1: ‘Hepta’ Data Set. For explanation, see text.

(A) (B)

Fig. 2: XOM embedding of the ‘Hepta’ data sets. The figure depicts the best
(A) and the worst (B) embedding result obtained by XOM for the 40 data sets
constructed according to the specifications explained in Fig. 1.

3 Experiments

Hepta Data Sets. In order to quantitatively evaluate the quality of dimen-
sionality reduction by XOM and to relate its results to other methods known
from the literature, we investigated the degree of structure preservation which
can be achieved by classical and advanced recent nonlinear embedding methods,
namely Principal Component Analysis (PCA), Locally Linear Embedding [4],
and Isomap [5]. For this purpose, we used 40 data sets similar to a synthetic
benchmark data set called ‘Hepta’ proposed in [6] for the evaluation of structure
preservation. — A single realization of a ‘Hepta’ data set is depicted in Fig. 1.
It consists of 2300 points randomly sampled from seven Gaussian distributions,
thus forming ‘clusters’ in IR3. The centroids of the six non-central Gaussian
distributions span the coordinate axes of the IR3, the respective clusters consist
of 300 data points each. The central Gaussian distribution consists of 500 data
points. We created 40 ‘Hepta’ data sets according to these specifications.

To quantitatively evaluate structure preservation, we used Sammon’s error
function [7]. Our results are summarized in Tab. 1. On average, XOM outper-
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Table 1: Comparative evaluation of computation times and structure preser-
vation for nonlinear embedding of 40 ‘Hepta’ data sets as specified in Fig. 1.
The table lists average computation times using an ordinary PC (Intel Pen-
tium 4 CPU, 1.6 GHz, 512 MB RAM). Average and minimum values as well as
the standard deviation of Sammon’s error E′ were computed as a measure of
structure preservation. The free parameters of all the methods examined in the
comparison (except PCA) were optimized to obtain the best results, i.e. to mini-
mize E′. Note that XOM yields competitive structure preservation at acceptable
computation times.

Method Comp. Time (s) E′ min(E′) σ(E′)
Isomap 468 1.851 · 105 1.319 · 105 0.384 · 105

LLE 11600 3.681 · 105 1.776 · 105 1.267 · 105

PCA 0.3 2.216 · 105 1.279 · 105 0.608 · 105

XOM 4.6 1.732 · 105 1.426 · 105 0.247 · 105

formed LLE and Isomap with regard to structure preservation, although Isomap
yielded better results in a few data sets. Interestingly, we frequently obtained
poor results for PCA. This is caused by the spatial symmetry of the data set
which makes the projection axis in PCA very sensitive to noise, i.e. to the ran-
dom choice of data points sampled from the Gaussian distributions specified in
the ‘Hepta’ data set construction. Thus, different clusters are frequently pro-
jected onto each other in the embedding result, i.e. cannot be separated, which
leads to impaired structure preservation. For illustration, the best and the worst
of the 40 embedding results obtained by XOM are shown in Fig. 2. — We em-
phasize that the results depicted in Tab. 1 depend on the structure of the data
set, and do not allow to draw final conclusions on the overall performance of
the nonlinear embedding algorithms with regard to the general degree of struc-
ture preservation or their computational expense. In addition, the choice of
other measures for structure preservation may also result in different ranking
scenarios. For example, we conjecture that PCA will be superior in situations
where the data is approximately located in a linear subspace of the observation
space. LLE and Isomap will perform better in situations where the data is not
distributed inhomogeneously in the observation space, i.e. does not exhibit an
underlying distinct cluster structure of almost isolated data patches, but rather
consists of a ‘connected’ single cluster. In such data sets, both LLE and Isomap
can accurately reconstruct the data with a smaller number of nearest neighbors,
which will also reduce their computational expense considerably.

However, even taking all these limitations into account, our investigation at
least shows that there exist classes of data sets where XOM yields competitive
results in comparison to the methods known from the literature.
Microarray Gene Expression Data. Fig. 3A shows the visualization result
obtained by XOM for structure-preserving dimensionality reduction of gene ex-
pression profiles related to ribosomal metabolism, as a detailed visualization of
a gene subset included in the genome-wide expression data taken from Eisen et
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al. [8]. The figure illustrates the exploratory analysis of the 147 genes labeled as
‘5’ (22 genes) and ‘8’ (125 genes) according to the cluster assignment by Eisen
et al. [8]. Besides several genes involved in respiration, cluster ‘5’ (blue) con-
tains genes related to mitochondrial ribosomal metabolism, whereas cluster ‘8’
(orange) is dominated by genes encoding ribosomal proteins.

In the XOM genome map of Fig. 3A, it is clearly visible at first glance
that the data consists of two distinct clusters. Comparison with the functional
annotation known for these genes reveals that the map overtly separates ex-
pression profiles related to mitochondrial and to extramitochondrial ribosomal
metabolism. Fig. 3B shows an enlarged section of the map indicated by the small
frame in Fig. 3A. Fig. 3C shows a data representation obtained by a SOM on
the same data, using a regular grid of 30 × 30 ‘neurons’. As can be clearly seen
in the figure, the SOM cannot achieve a structure-preserving mapping result as
provided by the Exploration Machine in Fig. 3A: Although the genes related to
mitochondrial and to extramitochondrial ribosomal metabolism are collocated
on the map, the distinct cluster structure underlying the data remains invisible,
if the color coding is omitted. In other words, visualization by the Exploration
Machine outperforms the SOM w.r.t. structure preservation in this example.

For quantitative comparison of results we computed Sammon’s error E′ [7]
as a quantitative measure of structure preservation for several other embedding
algorithms known from the literature. We obtained 2.21 · 103 (1.00) for XOM,
2.45 · 103 (1.11) for Sammon’s mapping [7], 2.77 · 103 (1.25) for Locally Linear
Embedding (LLE) [4], 2.82 · 103 (1.28) for PCA, 3.36 · 103 (1.52) for Isomap [5],
and 10.19 · 103 (4.61) for SOM, where numbers in brackets denote relative val-
ues compared to XOM. Computation times in seconds were 0.72, 8.52, 1.36,
0.03, 0.27, 988.21 for XOM, Sammon, LLE, PCA, Isomap, SOM, respectively.
These results show that XOM yields competitive structure preservation results
at acceptable computation time. – Fig. 3D shows how XOM can be used for
clustering of this data as well. To this end, the structure hypothesis in step 2 of
the XOM algorithm is changed from a uniform distribution in a unit square as
used in Fig. 3A to a set of two Gaussians centered at different locations of the
exploration space, e.g. on top and bottom of the embedding space in Fig. 3D.
As can be seen, the two clusters are separated completely. Note that the deci-
sion to use two clusters – instead of any different number of clusters – can be
conveniently based on the results of structure-preserving XOM visualization in
Fig. 3A, which can, thus, serve as a useful preprocessing step to clustering. The
visualization obtained by SOM in Fig. 3C, in contrast, is not clearly indicative
for the presence of exactly two clusters, if the color coding is omitted.

4 Conclusion and Outlook

We have introduced the Exploration Machine as a novel versatile learning method
for the analysis of multidimensional data. As can be concluded from our work,
XOM yields competitive results when compared to established methods known
from the literature. In addition, it is evident that XOM can directly be ap-
plied to both nonlinear embedding and clustering of non-metric data, as shown
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(A) (B) (C) (D)

Fig. 3: Visualization of genome expression profiles related to ribosomal
metabolism using the Exploration Machine. (A) Genome map obtained by
structure-preserving dimensionality reduction using the Exploration Machine.
(B) Enlarged section of (A). (C) Data representation obtained by SOM. (D)
XOM clustering result. For explanation, see text.

in [3]. As an outlook, it is important that XOM can be used to systematically
reverse other concepts related to topology-preserving learning. Obvious exam-
ples are batch and growing XOM variants [3] and the Fuzzy-Labeled XOM with
Relevance Learning which is easy and straightforward to derive as a systematic
XOM inversion of [9], thus linking the XOM framework to LVQ. Although future
systematic scientific investigation has to further elucidate the properties of our
method, we conjecture that XOM can constructively contribute to the field of
learning with neural maps.

References

[1] Kohonen, T., [Self-Organizing Maps ], Springer, Berlin, Heidelberg, New York,
3rd ed. (2001).

[2] Graepel, T., Burger, M., and Obermayer, K., “Self-organizing maps: Generaliza-
tions and new optimization techniques,” Neurocomputing 21, 173–190 (1998).

[3] Wismüller, A., Exploratory Morphogenesis (XOM): A Novel Computational Frame-
work for Self-Organization, Ph.D. thesis, Technical University of Munich, Depart-
ment of Electrical and Computer Engineering (2006).

[4] Roweis, S. and Saul, L., “Nonlinear dimensionality reduction by locally linear em-
bedding,” Science 290(5500), 2323–2326 (2000).

[5] Tenenbaum, J., de Silva, V., and Langford, C., “A global geometric framework for
nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).

[6] Ultsch, A., “Maps for the visualization of high-dimensional data spaces,” in [Proc. of
the Workshop on Self-Organizing Maps 2003 (WSOM03) ], 225–230 (2003).

[7] Sammon, J., “A nonlinear mapping for data structure analysis,” IEEE Transactions
on Computers C 18, 401–409 (1969).

[8] Eisen, M., “Cluster analysis and display of genome-wide expression patterns,” Proc.
Natl. Acad. Sci. USA 95, 14863–14868 (1998).

[9] Villmann, T., Seiffert, U., Schleif, F., Brüß, C., Geweniger, T., and Hammer, B.,
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