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Abstract. We propose a new algorithm for semi-supervised learning in the bipar-
tite ranking framework. It is based on the maximization of a so-called normalized
Rayleigh coefficient, which differs from the usual Rayleigh coefficient of Fisher’s
linear discriminant in that the actual covariance matrices are used instead of the
scatter matrices. We show that if the class conditional distributions are Gaussian,
then the ranking function produced by our algorithm is the optimal linear ranking
function. A kernelized version of the proposed algorithm and a semi-supervised
formulation are provided. Preliminary numerical results are promising.

1 Introduction

We tackle the problem of learning a ranking function in the bipartite ranking framework.
We, in particular, are interested in the problem of performing such learning in a semi-
supervised setting, where both labelled data and unlabelled data are in the training set.

If a considerable amount of work has been devoted to semi-supervised classifica-
tion – see the comprehensive references [1, 2, 3] for instance –, the literature semi-
supervised ranking thereof, is much less abundant (see notable contributions [4, 5, 6]).
Yet, being able to learn a ranking function from partially labelled data poses issues of
the utmost interest from the theoretical, algorithmic and practical points of view. The
present work essentially lies in the algorithmic side of the learning problem.

We propose a very straightforward learning algorithm for learning a ranking func-
tion, based on the normalized Rayleigh coefficient. This coefficient differs from the one
that is usually used by Fisher’s discriminant analysis in that it is not based on the scatter
matrices of the data but on their covariances, i.e. the normalized scatter matrices. The
learning algorithm we propose can take into account unlabelled data using the idea of
manifold regularization [7]. This is an important feature that we take advantage of to
provide an effective semi-supervised ranking procedure.

The paper is organized as follows. Section 2 introduces the notation and presents
the problem we address. In Section 3, we describe our approach to learn a ranking func-
tion using the normalized Rayleigh coefficient in a semi-supervised setting. Section 4
reports preliminary simulation results on the problem of ranking handwritten digits.

2 Problem

From here on, the following notation is used. X ⊂ R
d is the input space and Y =

{−1,+1} is the target/output space. Sl = {(Xi, Yi)}n
i=1 is an identically and indepen-
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dently distributed (iid) sample of n labelled variables over Z := X ×Y , with fixed and
unknown distribution DZ on Z . Su = {Xn+i}m

i=1 is an iid sample of m unlabelled
data distributed according to DX , the marginal probability of DZ with respect to X , i.e.
DX (·) =

∑
y∈Y DZ(·, Y = y). SX is the sample SX = {Xi}n+m

i=1 . Dy , for y ∈ Y , is
the distribution over X defined as Dy(·) = DZ(·|Y = y). I is the identity matrix.

The learning problem that we tackle is that of bipartite ranking where the aim is to
learn a function f ∈ R

X that minimizes the ranking risk Rrank defined as follows1:

Rrank(f) := P X+∼D+1
X−∼D−1

(f(X+) ≤ f(X−)) = E (X,Y )∼D

(X′,Y ′)∼D

ˆ
If(X)≤f(X′)|Y = +1, Y ′ = −1

˜
.

We are specifically interested in learning in a semi-supervised setting, where f is learned
from a sample S = Sl ∪ Su of labelled and unlabelled data. To this end, we propose a
simple and effective learning strategy inspired by quadratic discriminant classifiers [8].

3 Normalized Rayleigh Coefficient and Manifold Regularization

3.1 Quadratic and Linear Discriminant

Quadratic discriminant analysis (QDA) is primarily a classification model [8]; it makes
the assumption that each class is normally distributed, i.e., Dy(·) = N (·;µy,Σy),
where µy and Σy are the mean and covariance parameters of the distribution. For sake
of completeness, we recall that

N (x; µ, Σ) =
1

(2π)
d
2 |Σ| 12

exp

„
−1

2
(x − µ)�Σ−1(x − µ)

«
,

where � denotes the matrix/vector transpose. Learning a QDA consists in estimating µy

and Σy using their maximum likelihood (ML) estimates µ̂y and Σ̂y . Given a realization
of the labelled training sample Sl = {(xi, yi)}n

i=1, these are defined by

µ̂y =
1
ny

∑

i:yi=y

xi, and Σ̂y =
1
ny

∑

i:yi=y

(xi − µ̂y)(xi − µ̂y)� (1)

where ny is the number of instances of class y in Sl. Regularized versions of the
matrices Σ̂y may be preferred over the plain ML estimates: a stricly positive definite
matrix, e.g. λI with λ > 0, may be added to the ML estimates [9].

Once these estimates are computed, together with the estimates π̂y = ny/n of the
prior probabilities for each class, the decision of the quadratic classifier for an example
x is made according to (recall that we consider the binary case)

P(Y = 1|X = x) =
π̂+1N (x; μ̂+1, Σ̂+1)

π̂+1N (x; μ̂+1, Σ̂+1) + π̂−1N (x; μ̂−1, Σ̂−1)
(2)

such as the predicted class is +1 if P(Y = 1|X = x) ≥ 1/2 and −1 otherwise; this
classifier is ‘quadratic’ because, after rearranging the terms of (2), the decision rule

1This is 1 minus the well known expected Area under the ROC Curve (AUC).
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depends on the computation of a quantity like x�Ax + Bx + c, for A,B matrices, A
positive definite, and c ∈ R. This classifier is obviously Bayes optimal if the classes
are indeed Gaussian distributed. We note that QDA is a generalization of the Fisher
discriminant analysis (FDA) [10] as it assumes class-dependent covariance matrices.

3.2 From QDA to Ranking via the Normalized Rayleigh Coefficient

Even if QDA is essentially a classification algorithm, its estimation process (1) may
serve to learn a linear ranking function f of the following form: f(x) = w�x:

Proposition 1. If (Dy)y∈Y are Gaussian with parameters µy,Σy , then

w∗ = argmin
w

ρ(w), with ρ(w) :=
(w�µ+1 − w�µ−1)2

w� (Σ+1 + Σ−1)w

realizes the minimum ranking risk.

Proof. For a linear ranking function f with f(x) = w�x, we have:

Rrank(f) = PX+,X−(f(X+) ≤ f(X−)) = PX+,X−(w�(X+ − X−) ≤ 0)

=
1

(2π)
d
2

q
σ2

+(w) + σ2
−(w)

Z 0

−∞
exp

0
@−1

2

2
4z − (μ+1(w) − μ−1(w))q

σ2
+1(w) + σ2

−1(w)

3
5

21
A dz

=
1

(2π)
d
2

Z − μ+1(w)−μ−1(w)q
σ2
+1(w)+σ2

−1(w)

−∞
exp

„
−u2

2

«
du,

where μy(w) := w�µy and σ2
y(w) := w�Σyw; we used that X+ − X− is dis-

tributed as N (X+ − X−;µ+1 − µ−1,Σ+1 + Σ−1) and, for Z distributed according
to N (Z;µz,Σz), w�Z is distributed according to N (w�Z;w�µz,w

�Σzw). This
directly gives that Rrank(f) is minimized when − μ+1(w)−μ−1(w)√

σ2
+1(w)+σ2

−1(w)
(= −√

ρ(w)) is

minimal, which occurs for w∗.

A supervised learning procedure. This result calls for a specific algorithm given a
labelled sample Sl. It simply consists in computing the empirical estimates of the mean
and covariances as in (1), forming the empirical counterpart ρ̂(w) of ρ(w) as

ρ̂(w) :=
(w�µ̂+1 − w�µ̂−1)

2

w�
“
Σ̂+1 + Σ̂−1

”
w

=
(μ̂+1(w) − μ̂−1(w))2

σ̂2
+1(w) + σ̂2

−1(w)
, (3)

and finding ŵ such that ŵ = argminw ρ̂(w).
The coefficient ρ̂ is very similar to the Rayleigh coefficient considered in FDA.

There is, however, a slight but very important difference between the usual Rayleigh
coefficient and the proposed coefficient: here, the matrices that are used in the de-
nominator of (3) are the actual covariance matrices whereas FDA uses scatter matrices,
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i.e. the unnormalized covariances. This is the reason why we term ρ̂ the normalized
Rayleigh coefficient. For the same reasons as with FDA, a solution for ŵ is

ŵ = (Σ̂+1 + Σ̂−1)−1(µ̂+1 − µ̂−1), (4)

while any vector positively colinear to ŵ defines the same ranking.

Noticeable features. If the distributions of the classes are Gaussian then QDA is Bayes
optimal for classification and directly provides a way to compute the optimal linear
ranking function. Besides, as noted in [11], minimizing the ranking error and the mis-
classification error is not necessarily achieved by the same procedure (note the differ-
ence between the classification using (2) and the linear scoring entailed by (4)); how-
ever, we note that FDA and (4) provide the same vectors if the classes are balanced or if
the covariances are equal. Finally, the learning procedure that we have shown here does
not build instances made of pairs of positive/negative data to learn a ranking function
as do many ranking algorithms (with the notable exception of [12]).

3.3 Kernels and Semi-Supervised Learning

We now consider the problem of semi-supervised ranking from a partially labelled sam-
ple S = Su ∪ Sl and the introduction of kernels to learn nonlinear ranking functions.

Even if it is straightforward to reformulate (3) with kernel functions in a way similar
to Mika et al. [10] for FDA, we do not undertake this strategy. We instead implement
a kernel subspace projection strategy similar to that of the Kernel Projection Machines
[13]. Namely, given a kernel k, and φ(x) = k(x, ·), a sample S = Sl ∪ Su and
a target dimension p, we project the data of SX onto the subspace Vp of dimension
p generated by the Incomplete Kernel Gram-Schmidt Orthogonalization (see [14] for
details) of φ(SX), the images φ(x) by φ of the x’s from S. We thus end up with a semi-
supervised learning problem where X ⊂ R

p. The learning procedure can be limited to
the search for a linear ranking function on the transformed data. Note that [13] uses the
space spanned by the p first eigenvectors of the covariance of the φ(x)’s; for p fixed,
our strategy is computationally less demanding while it still provides good results.

In addition, we constrain the smoothness of the ranking function with respect to the
geodesics of DX by using the normalized Laplacian regularizer proposed by [7]: given
a number c, we first construct the symmetric graph of c nearest (wrt e.g., the euclidean
norm) neighbors of S (we do this before the projection step), form its adjacency matrix
W and compute the normalized Laplacian n×n matrix L = I−D−1/2WD−1/2, where
D is the diagonal matrix with elements Dii =

∑
j Wij and use L as a regularizer in (3).

Semi-supervised nonlinear learning algorithm. Given a partially labelled sample S, a
kernel k, φ, such that φ(x) = k(x, ·), c ∈ N, p ∈ N, λ ≥ 0 and γ ≥ 0 the complete
learning algorithm can be described as follows

1. Compute L using c as the nearest neighbor parameter.

2. Perform an Incomplete kernel Gram Schmidt Orthogonalization of φ(SX) using
k to get a subspace Vp of dimension p and an orthonormal basis {v1, . . . ,vp}.
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3. Form the new partially labelled training set Sp = Sp
l ∪Sp

u with Sp
l = {(Xp

i , Yi)}n
i=1,

Sp
u = {Xp

n+i}m
i=1 and Xp

i = [v�
1 φ(Xi) · · ·v�

p φ(Xi)]�, i = 1, . . . , n + m; note
that the computations simply require kernel evaluations.

4. Compute the estimates µ̂p
y and Σ̂p

y with respect to Sp
l according to (1).

5. Letting X� = [Xp
1 · · ·Xp

n+m], compute a linear ranking/scoring function ŵ as2:

ŵ =

„
λI + Σ̂p

+1 + Σ̂p
−1 +

γ

(n + m)2
X�LX

«−1

(µ̂p
+1 − µ̂p

−1). (5)

To predict the score of X , it thus suffices to compute Xp and then f(X) = ŵ�Xp.
The X�LX term of (5) makes the predictions of ŵ be smooth with respect to the

geodesics of the data, as in [7]: the scores computed by w are given by Xw, which
entails a w�X�LXw term in the denominator of (3), which, in turn, leads to (5).

4 Numerical Illustration

We have carried out simulations on the OPTDIGITS problem from the UCI repository.
We have considered the bipartite ranking situations where (a) digit ‘0’ is of class +1 and
all other digits are of class -1, and (b) digits ‘0’ to ‘4’ are of class +1 and all other digits
are of class -1. The dataset set is made of ∼ 3900 training patterns (∼ 390 patterns per
digit) and 1800 test patterns.

We have made arbitrary choices for some hyperparameters: p is set to p = 10
(which is very small), the nearest neighbor parameter c to c = 2, and λ = 0.001.
The width of the Gaussian kernel we use and the value of γ are set according to the
performance of the learning procedure on a validation set (a part of the training set
that is not used for learning). In the following table we report the AUCs (=1-Rrank(f))
computed on the independent test patterns for various ratios of labelled data.

% Labelled 10 20 30 40 50 60 70 80 90 100

0 vs. all 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5
0-4 vs 5-9 70.6 72.2 73.1 77.0 77.1 79.5 80.2 81.1 81.2 81.2

The results are good even in the situation where the ratio of labelled data is very low,
particularly for the 0 vs all problem, which is an ‘easy’ problem (see [15]). As for the
0-4 vs 5-9 problem, the results are still very competitive with the situation where all the
data are labelled (last column), even when very few data are labelled. If we compare
our preliminary results to those given in [15], we observe that the results of our semi-
supervised learning are among the top ranking methods for this particular problem.

5 Conclusion

We have proposed a ranking algorithm inspired by the idea of QDA. We have shown
that if the class conditional distributions are Gaussian, then our algorithm provides the

2Notice that the matrix to be inverted is of order p.
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best linear ranking function. The use of kernels makes our method a sensible strategy to
provide nonlinear ranking functions and the problem of learning from partially labelled
data is made possible by resorting to the well-known method of manifold regularization.
Preliminary empirical resutls are very encouraging.

As a first extension to this work, we plan to carry out more intensive simulations
on various datasets. Then, we would like to establish the statistical performances of the
regularization through the subspace projection method that we have used. Finally, we
will try to see how the theoretical results of [16] on generalization bounds on the AUC

can be used to select the hyperparameters of the presented algorithm.
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