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Abstract. A spline-based modification of the previously developed Neuro-Fuzzy 
Kolmogorov's Network (NFKN) is proposed. In order to improve the 
approximation accuracy, cubic B-splines are substituted for triangular membership 
functions. The network is trained with a hybrid learning rule combining least 
squares estimation for the output layer and gradient descent for the hidden layer. 
The initialization of the NFKN is deterministic and is based on the PCA procedure. 
The advantages of the modified NFKN are confirmed by long-range iterated 
predictions of two chaotic time series: an artificial data generated by the Mackey-
Glass equation and a real data of laser intensity oscillations. 

1 Introduction 

According to the Kolmogorov's superposition theorem (KST) [1], any continuous 
function of d variables can be exactly represented by superposition of continuous 
functions of one variable and addition: 
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maxmin xxxxx ××∈ K , )(•lg  and )(, •ilψ  are some continuous 
univariate functions, and )(, •ilψ  are independent of f. Aside from exact 
representations [2], this theorem attracted the attention of many researchers as a basis 
for the construction of parsimonious universal approximators, e.g. in works [3–6]. In 
[4–6] it was shown that approximators in form of superposition of univariate 
functions and addition are especially advantageous for overcoming the curse of 
dimensionality. For the construction of the inner and outer functions in approximate 
Kolmogorov’s representations, the authors of [5] and [6] used cubic splines due to 
their nice numerical properties. 
 A practical implementation of an interpretable KST-based universal 
approximator within a neuro-fuzzy modeling framework was proposed in [7]. This 
model called Fuzzy Kolmogorov's Network (FKN) has simple structure in form of a 
two-level fuzzy rule base according to the multi-resolution approach [4]. The training 
of the FKN is based on an alternating linear least squares technique. 
 In [8], a modification of the FKN called Neuro-Fuzzy Kolmogorov's Network 
(NFKN) was proposed. The NFKN is trained with a hybrid learning rule which is a 
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combination of a gradient descent procedure and linear least squares method. Thus, 
the computational complexity of the training algorithm is reduced. 
 In this paper we consider how the approximation accuracy of the NFKN model 
can be further improved via the use of B-spline membership functions (MFs) [9] 
retaining at the same time the interpretability of the neuro-fuzzy model [7, 8]. 

2 Network Architecture 

The NFKN architecture comprises two layers of neo-fuzzy neurons (NFNs) [10] and 
is described by the following equations: 
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where n is the number of hidden layer neurons, )( ),1()2( l
l of  is the l-th nonlinear 

synapse in the output layer, ),1( lo  is the output of the l-th NFN in the hidden layer, 
)(),1(

i
l

i xf  is the i-th nonlinear synapse of the l-th NFN in the hidden layer. 
 The nonlinear synapses are single input-single output fuzzy inference systems: 
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where im ,1  and lm ,2  is the number of MFs per synapse in the hidden and output 

layers respectively, )()1(
, ihi xµ and )( ),1()2(

,
l

jl oµ  are the MFs, ),1(
,

l
hiw  and )2(

, jlw  are tunable 

weights. Without loss of generality, we assume further that dimm i ,,1,1,1 K== , and 
nlmm l ,,1,2,2 K== . 

 The description (1), (2) corresponds to the following two-stage fuzzy inference 
procedure 
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and the following multi-resolution fuzzy rule base [7, 8]: 
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where ŷ  is the output of the neuro-fuzzy network, and hiX ,  and jlO ,  are the 
linguistic terms defined by MFs in the hidden and output layers, respectively. In 
NFKN, the MFs are triangular [7, 8]. In this paper, we generalize the NFKN via the 
use of B-spline basis functions for the MFs [9]. 
 Given a sequence of ordered knots { }mcc ,,1 K , the p-th B-spline basis function 
of order q  is defined as 
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Remarkably, one obtains triangular MFs letting 2=q  in (4). Below we will consider 
only B-splines for 2=q  and 4=q , the latter case being cubic functions. For 
practical implementation, also quadratic B-splines for 3=q  might be of interest. 
 For a spline-based NFKN given by (1)–(3), qmm += 1  for the hidden layer, 

qmm += 2  for the output layer, )()( ,
)1(

, iqhihi xNx =µ , and )()( ),1(
,
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,

l
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 To maintain partition of unity throughout the universe of discourse of x , 
additional marginal functions should are added at both ends of the universe of 
discourse of x  in (4) for 2>q  (see Fig. 1) [9]. To further guarantee the partition of 
unity also for inputs outside the universe of discourse of x , we set the leftmost and 
rightmost knots to very large negative and positive values, respectively. 
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Fig. 1: B-spline membership functions of order 2 (left) and 4 (right) defined for 

variable ]100,0[∈x  such that 5 membership function are defined over the universe 
of discourse of x . Shaded areas (right) correspond to marginal B-functions 

 As in [7, 8], we assume that the MFs are fixed and equidistantly spaced over the 
range of each NFN input. The parameters of the MFs (spline knots) are not tuned. The 
MFs in the NFKN at each input in the hidden layer are shared between all neurons. 

3  Learning Algorithm 

The weights of the NFKN are determined by means of a batch-training algorithm [8] 
briefly outlined below. The minimized error function is 
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where [ ]TKyyY )(,),1( K=  is the vector of target values, and 

[ ]TKtytytY ),(ˆ,),1,(ˆ)(ˆ K=  is the vector of network outputs at epoch t, and K is the 
number of data points in the training data set. 
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 Since the nonlinear synapses (2) are linear in parameters, the vector of the 
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where )(tη  is an adjustable regularization term used to prevent rank deficiency. 
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where 10 << γ  is the learning rate constant, and normalization of the gradient in (7) 

is used to speed up the convergence. Derivatives ),1(
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 Each epoch of training starts with the optimization of the output layer weights 
according to (6), then the hidden layer weights are updated according to (7). In our 
implementation the training is stopped when either a pre-defined number of epochs 
are reached or the value of the error function (5) could not be improved for 50 
subsequent iterations. 
 Since the NFKN does not have any bias weights and the outputs of neurons are 
linear w.r.t. their weights, the initialization of hidden layer weights )1(W  can be 
performed deterministically via principal component analysis (PCA) as proposed in 
[11]. The hidden layer neurons are assigned weights from the first n  loadings 
determined by PCA from the degrees of membership in the hidden layer computed on 
the training data set. 

4 Experiments 

In our experiments we tested the performance of models with membership functions 
of order 2=q  (triangular MFs, ‘NFKN’) and 4=q  (cubic B-spline MFs, ‘SNFKN’) 
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in iterated predictions of the Mackey-Glass (MG) time series [12] generated for 
17=τ , and the laser time series from Santa-Fe time series competition [13]. 

 For the MG time series, we trained networks with 17 delayed inputs using 3000 
data points from 118 to 3117 to predict the time series one step ahead. After training, 
the networks were used for iterated predictions of the next 500 points without 
‘knowing’ the actual data of the time series for these 500 points. Networks with 
varying architectures for 741 K=m , 952 K=m , and 61K=n  were tried. The best 
SNFKN model provided a three times more accurate prediction than the best NFKN 
(see Fig. 2 and Table 1, where NMSE stands for normalized mean squared error). 
 

Model 1m  2m  n  Parameters Epochs NMSE 
SNFKN 5 7 6 552 149 0.0025 
NFKN 5 9 6 564 189 0.0076 

Table 1: Best results for MG time series prediction 
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Fig. 2: Mackey-Glass time series (solid line in the upper plot), iterated predictions 

and errors (dashed line for SNFKN, dash-dotted line for NFKN) 

 For the laser time series, networks with 30 delayed inputs were trained using 
970 data points from 31 to 1000, and the iterative predictions were performed for the 
next 100 points from 1001 to 1100. Networks with 1041 K=m , 1352 K=m , and 

81K=n  were tried. As can be seen from Table 2 and Fig. 3, the best SNFKN model 
was almost 4 times more accurate than the best NFKN. 
 

Model 1m  2m  n  Parameters Epochs NMSE Rank 

SNFKN 5 11 7 1127 465 0.0320 1 
SNFKN 4 12 5 660 307 0.0767 6 
NFKN 5 9 4 636 174 0.1194 1 

Table 2: Best results for laser time series prediction 
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Fig. 3: Laser time series and iterated predictions 

The best result in Table 2 with 032.0NMSE =  and 1127 parameters is very close to 
that reported in [13] for the winner of the Santa-Fe time series competition with 

027.0NMSE =  and 1105 adjustable weights. However, the best forecasting model in 
[13] was based on a specialized multilayer architecture with FIR synapses and much 
more sophisticated and computationally intensive training algorithm. 
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