ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Stimulus processing and unsupervised learning
in autonomously active recurrent networks

Claudius Gros and Gregor Kaczor

Institute for Theoretical Physics, Goethe University,
60054 Frankfurt/Main, Germany

Abstract. Strongly recurrent neural nets may show a continuously ongo-
ing self-sustained activity, as it is the case for the brain. A new paradigm
for learning is needed for neural nets being such autonomously active,
since standard Hebbian-style online learning would result in uncontrolled
reinforcement of accidental activity patterns.

Here we propose that autonomously active neural networks processing a
time series of stimuli adapt whenever a stimulus successfully influences the
ongoing internal dynamics. In this case the incoming stimulus corresponds
to a novel signal. We then show, that the network performance results in
an unsupervised non-linear independent component analysis of the input
data stream. We propose this paradigm to be of relevance for stimulus
processing in both natural and artificial neural nets.

1 Introduction

The self-generated internal neural activity has a central functional role for the
brain, and presumably also for prospective advanced artificial cognitive systems.
New experimental evidences, and theoretical considerations, indicate that this
eigendynamics is important for regulating the overall cognitive processing of the
brain. This spontaneous internal dynamics is influenced, but in general not
forcefully driven, by the sensory input signals. In other words, the brain is not a
generalized input-output calculator. In this context we study on one side possible
working principles for the self-sustained internal dynamics of autonomous neural
nets and on the other side its interaction with the input data stream.

For the self-sustained neural activity of the recurrent net we will use transient-
state dynamics, motivated by an increasing flux of experimental results [1, 2, 3,
4, 5], indicating that the spontaneous neural activity in the cortex has often the
form of quasi-stationary states. These states are not accidental in general, their
semantic content being related to the informational content of the sensory data.

We propose that semantic correlations between the external stimuli and the
internal transient-state activity of the autonomously active recurrent net are
built up whenever the sensory signals lead to an unexpected modulation of the
internal dynamics, corresponding to a novel event. We have implemented this
paradigm algorithmically and tested the resulting system with the bars problem.
We found it capable to perform a non-linear independent component analysis
(IDA) on its own, being all the time continuously and autonomously active.
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2 Quasistationary states in recurrent neural nets

Isolated dynamical systems have very characteristic long-term behaviors [6], such
as chaotic orbits or trajectories approaching normal or strange attractors or lim-
iting cycles. A special class of limiting cycles denoted ‘transient-state dynamics’
[7], refers to limiting cycles composed of a series of quasistationary plateaus of
dynamical activity, as illustrated in Fig. 1. We note, that the individual tran-
sient states turn into stable attractors when the length of the plateau becomes
extended in time [8]. Transient state dynamics is intrinsically competitive in
nature. When the current transient attractor turns unstable the subsequent
transient state is selected by a competitive process. Transient-state dynamics is
a form of ‘multi-winners-take-all’ process, with the winning coalition of dynam-
ical variables suppressing all other competing activity.

Similar processes have been proposed to be relevant for various neural func-
tionalities in the brain. Edelman and Tononi [9, 10] argue that ‘critical reentrant
events’ constitute transient conscious states in the human brain. These ‘states-
of-mind’ are in their view semi-stable global activity states of a continuously
changing ensemble of neurons, the ‘dynamic core’. This activity takes place
in what Dehaene and Naccache [11] denote the ‘global workspace’. The global
workspace serves, in the view of Baars and Franklin [12], as an exchange platform
for conscious experience and working memory. Crick and Koch [13] and Koch
[14] have suggested that the global workspace is made-up of ‘essential nodes’,
i.e. ensembles of neurons responsible for the explicit representation of particular
aspects of visual scenes or other sensory information.

3 Model

We have formulated a continuous-time neural network model showing well be-
haved transient state dynamics in terms of ‘associative thought processes’ [7, 8.

With a ) ( 0)
. —Z;) T Ty >
xz_{ T;T; (Ti<0) (1)

one can quite generally define the growth rates r; for the neural activity-levels
x; € [0,1] of neuron . Typical time series of growth rates r; as obtained from
numerical simulations are illustrated in Fig. 1. When the r; > 0 the respective
neural activity x; increases, approaching rapidly the upper bound, as illustrated
in Fig. 1; when r; < 0 it decays to zero. The model is specified [7, 8], by
providing the functional dependence of the growth rates with respect to the set
of activity-states {z;}.

During the transition periods most growth rates r; acquire small absolute
values and enter the competition process for the next winning coalition, as illus-
trated in Fig. 1. The system has then a ‘sensitive period’ during the transition
periods, at which point it becomes sensible to the influence of external sensory
signals.
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Fig. 1: Results (color coding) for the activities x;(¢), the growth rates r;(t)
and the input signals Ar;(¢) from a simulation of a network containing N = 12
sites (topologically an icosahedron). The time series of winning coalitions is
given at the top. The first input signal does not influence the neural activities
x; qualitatively, the second input signal does however modulate the ongoing
transient-state dynamics.

3.1 Sensitive periods and learning

The sensory input signals contribute to the growth rates r; of the individual
neurons via _

N (2)
where T‘Emt) is the internal contribution to the growth rate and where Ar; encodes
the influence of the input signals. Homeostatic self-regulation, inherent to the

model [8], leads to typical input-signal strength of the order

- _J 0.5 (active input)
Ar; = { 0 (inactive input) - (3)

The input signal will therefore not destroy an active transient state, but it will
enter into the competition for the next winning coalition during a sensitive pe-
riod. This situation is exemplified in Fig. 1, where we present simulation-results
for a system containing N = 12 neurons subject to two sensory inputs Ar;(¢).
The self-generated time series of winning coalitions is not redirected for the case
of the first input signal, compare Eq. (3). The second input signal does how-
ever overlap with a sensitive period and the strongest components of the input
influence the neural competition for the next winning coalition.
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Fig. 2: For the bars-problem the response, see Eq. (5), of the 14 winning coali-
tions with respect to the ten reference patterns, viz the 5 horizontal bars and
the 5 vertical bars of the 5 x 5 input field.

The model has therefore well defined time-windows suitable for the learning
of correlations between the input signal and the intrinsic dynamical activity,
namely during and shortly after a transition period, alias the sensitive period.

3.2 Novelty signals

A cognitive system should build up correlations between the sensory input and
the neural activity patterns of the self-sustained dynamical activity only when
it receives a non-trivial information, viz when something novel happens. Tech-
nically we define a global signal S(t). It is activated whenever any of the input
signals Ar; changes the sign of the respective growth rates,

¢, 1 >0 (r; > 0) and (rgi"t) < 0) (4)
<0 otherwise '

The input signal Ar; successfully modulates the internal process, making a qual-
itative difference, when Eq. (4) is fulfilled. The novelty signal S(t) is a global
signal and a sum ), over all dynamical variables is therefore implicit on the
right-hand side of Eq. (4).

It is desirable that the interlayer connections v;; (with ¢ being an internal neu-
ron and j a sensory input) do neither grow unbounded with time (runaway-effect)
nor disappear into irrelevance. Suitable homeostatic normalization procedures
are therefore implemented [15].
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Fig. 3: The geometry of the neural net as a linear chain of triangles (3-site
cliques). The winning coalitions [i] (i = 1,..,14) are numerated and correspond
here to the individual triangles.

4 The Bars Problem

In order to evaluate the performance of the network we selected the bars problem
[16], a standard non-linear task in the domain of independent component analysis
[17]. The input layer is an L x L matrix. Basic patterns are the L vertical and
the L horizontal bars. The individual input patterns are made-up of a non-linear
superposition of the 2L basic bars, containing with probability p = 0.1 any one
of them. For the simulations we presented to the system about Npg =~ 5 x 103
randomly generated 5 x 5 and 10 x 10 input patters [15].

The results for the simulations are presented in Fig. 2 for the case of the 5 x5
bars problem. For the geometry of the network we used for simplicity a chain
containing 15+14=29 sites and 14 potential winning coalitions, as illustrated in
Fig. 3. The winning coalitions are here 3-site fully interconnected clusters, i.e.
the cliques in math terminology. In Fig. 2 we present the response

1 3
S(Ca)ie;jvijxj a=1,.,14, [=1,.,10 (5)

of the 14 potential winning coalitions C,, to the 10 basic input patterns {xf ] =
1,..,25}, the isolated bars. Here C, denotes the set of sites of the winning-
coalition a and S(Cl,) its size, here S(Cy,) = 3. The individual potential winning
coalitions have acquired, a result of the unsupervised learning, distinct suscep-
tibilities to the 10 bars. The problem is however in this case over-complete, as
there are more potential winning coalitions than statistically independent basic
patterns. The learning is very fast, in addition, and perfect signal separation
cannot be expected.

5 Discussion

We studied the interplay of the eigendynamics of a recurrent neural net, having
the form of a time-series of winning coalitions, with the sensory input. We
found that the system performs a non-linear feature analysis on its own, with
the internal associative thought process acquiring semantic content. We believe
that self-active recurrent networks will play a central functional role for future
advanced artificial cognitive systems and we hope that this work will stimulate
further research in this field.
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