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Abstract. In most models of spiking neural networks, routing complex-
ity and scalability have not been taken into account. In this paper, we
analyse recent neural network models on their routing complexity, using
a method from circuit design known as Rent’s Rule. We find a high com-
plexity in most of the models for a wide range of connectivity levels. As a
consequence, these models do not scale well in a two- or three-dimensional
substrate, such as neuromorphic hardware or the brain.

1 Introduction

Models of spiking neural networks have so far been constrained mainly by func-
tion; routing complexity and connectivity scaling have almost not been taken into
account. While these models can explain many functional aspects and resemble
general network properties such as connection count and small-world behaviour,
their implementability and scalability in a two- or three-dimensional substrate,
such as neuromorphic hardware or the brain, remains mostly unclear. This is
the more surprising as lowering the routing complexity of a model would ease its
implementation in neuromorphic hardware and its partitioning for distributed
software simulators.

In this article, we investigate the routing complexity of spiking neural network
models employing an empirical relationship known as Rent’s Rule [1, 2]. We use
a variety of neural network models in our analysis, including stochastic, small-
world and hierarchical connection models, as well as nervous system connectivity
data. In the following, we first give a short overview over related work on this
topic before we introduce Rent’s Rule and its relation to connection complexity.
We then use Rent’s Rule for connection complexity analysis.

2 Related work

Several lines of research analyse connectivity in neural and other networks. Be-
sides the studies on principal properties of large-scale networks [3], there are
several investigations on underlying design constraints of biological neural net-
works, e.g. dealing with connection length, transmission delay and processing
path length [4, 5]. The underlying assumptions often pose constraints on com-
plexity, but these have not been integrated into functional network models.
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There exist several scaling laws in biological neural networks, e.g. concerning
neuron density or connection length [6]. Beiu and Ibrahim used such a relation-
ship for brain matter to arrive at an estimation of Rent’s Rule for complete
mammalian brains [7] that, however, only reflects the scaling of the number of
connections, but not their distribution. Besides these global estimates, studies
on interconnect complexity for neural networks are rare (an exception is [8]), or
concern the scaling-performance trade-off for artificial neural networks [9].

There are manifold concrete models of neural networks, from which we pick
out only few, covering a wide range of connectivity approaches. First, there are
stochastic network models, which consist of a small number of neuron groups
with uniform random connectivity between them [10, 11]. Small-world models
in contrast succeed in realising a short maximum path length by generating a
combination of global and local connections [12]. Similar to feed-forward arti-
ficial neural networks, hierarchical models consist of several subsequent layers
of neurons (e.g. the HMAX model, [13]). Biological measurements on single
connections are reflected in brain networks [5].

3 Rent’s Rule

Rent’s Rule, first published by Landman and Russo [2], is an empirical rule,
relating the size of a network partition G to the number of its connections T :

T (G) = T · Gr . (1)

For neural networks, a partition is a group of neurons and G determines the
number of neurons in the group. Landman and Russo define T as the number of
connections (or pins) the partition forms with the rest of the network. The two
parameters T and r are the Rent parameters with T defining the mean number
of pins of a neuron and r determining the scaling of pin count with partition
size. r is called the Rent exponent and is used as a measure of connection
complexity (for other applications, see [1]): For low r (→ 0), pin count only
slightly increases when partitions of the network are merged, meaning that most
of the connections between them are internal to the combined partition. In
other words, local connections dominate over global ones. In contrast, for high
r (→ 1), merging partitions will produce only few internal connections.

It is clear that the partitioning strategy also has an influence on the Rent
exponent r. From the numerous possibilities (see [1]), we chose the method of
Hagen et al. [14], because it promises the lowest possible r. In short, this method
uses a spectra-based ratio cut algorithm to hierarchically divide a network into
disjunct partitions with minimized connectivity between them. Then, a sequence
of partitionings, i.e. complete divisions of the network into disjunct partitions,
is extracted and average values G, T calculated for each; then, a straight-line fit
of these values in the double-logarithmic domain gives the Rent parameters. In
addition, we iteratively remove T -values deviating more than 5% from the fit.

Figure 1A shows the restrictions on connectivity by a physical substrate: The
substrate determines the maximum mean pins per element T sub by its relative
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Fig. 1: A: Qualitative scaling of pin count T with partition size G [2]. Gray
area: allowed region of a substrate with maximum Rent parameters T sub and
rsub. B: Partitions (points) and extracted partitioning sequences (lines) for two-
level networks with random (left) and neighbour (right) connectivity. Thin line:
Extracted Rent power law.

connection density, as well as the Rent exponent rsub by its dimension. For two
dimensions, the exponent is restricted to r ≤ rsub = 1

2 ; otherwise, the fraction of
connectivity on the whole system as well as the length of the connections must
grow with network size [14], resulting in poor scaling. This is because pin count
scales with system side length x, i.e. T ∼ x, but partition size scales with area,
i.e. G ∼ x2, resulting in T ∼ G

1
2 . A similar argument leads to rsub = 2

3 for
three-dimensional substrates [14]. The highest possible Rent exponent r = 1 is
found in uniform random graphs and randomly partitioned networks [1].

Landman and Russo found the power law only for partitions up to a certain
size, which they called Region I. For bigger partitions, a more complicated rela-
tionship is visible in their data, called Region II. As illustrated in Figure 1A, a
reason for this effect may be the adaption of the internal connectivity to the of-
ten limited number of system inputs and outputs, Tout. The two-region solution
also points to an obvious prerequisite of the power-law relationship that is often
neglected: The connectivity at different system levels must be similar to make
the relation work over a broad range of partition sizes (Region I). Otherwise,
the solution has to be split up into more regions. We show this on a two-level
model, for which the Rent exponents are known. On the lower level, groups
of 5 neurons were fully connected (r = 1). On the higher level, groups were
arranged on a 10×10 grid. 4 bi-directional inter-group connections were formed
per group, either with nearest neighbours (r = 0.5) or with randomly chosen
groups (r = 1). Figure 1B confirms our prediction that a single power law may
not cover the whole connectivity.

4 Analysis results

We will now extract the relationship of pin count and partition size for the
networks mentioned in section 2. For stochastic network models, we generated
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Fig. 2: Log-log plot of pin count over neuron count per partition for different
networks; inlays denote basic network properties (N : neuron count, S: connec-
tion count, d: connection density, d = S/N2); A: stochastic network models,
B: displaced network model with different displacement distances d, C: HMAX
network model, D: brain network of C. elegans. Points and lines as in Figure 1;
single partitions omitted in A and B for clarity.

instances with 1000 neurons and 100 inputs of the models by Häusler and Maass
[10] and Kremkow [11], using connection probabilities from the manuscripts.
The resulting partitioning sequence is shown in Figure 2A. The Rent exponent
is close to 1 in a wide range for both models due to the uniform random connec-
tivity inside regions. Thus, linear (r = 1) scaling breaks down only at biggest
partitions. The sharp decrease towards the biggest partition seen in the plot is
caused by the low number of inputs and outputs to the network, which, however,
has no influence on the partitioning at smaller partition sizes.

To resemble the small-world model of Herzog et al. with displaced connec-
tions [12], we placed 1000 neurons on unit area [0, 1] × [0, 1], each having a
branching point at distance d in random direction. A neuron connected to all
neurons that were within distance 0.06 to its branching point. Figure 2B shows
results for different branching point distances d. For pure local connectivity
(d = 0), linear scaling breaks down at a partition size around 10 neurons, which
roughly compares to the 11.3 neurons expected to lie inside the connection area.
With increasing distance d, this break-down moves towards bigger partitions,
making connectivity more random-like.
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For analysing the routing complexity of hierarchical models, we generated a
downscaled approximation of the HMAX model by Riesenhuber and Poggio [13].
Each layer was formed by a rectangular grid of neurons, which were connected
according to a Gaussian probability function of increasing width at higher layers.
As Figure 2C shows, the model has a high Rent exponent over a broad range.
This may be caused by the randomness of connections and the high inter-layer
connectivity. Only at the topmost partitionings, pin count per partition does
not increase further with partition size, reflecting the structure in the network.

Figure 2D shows partitioning results for the brain network of C. elegans
[5]. It has a scaling with Rent exponent significantly lower than 1, but still
high connection complexity. However, the increase lowers at a partition size of
approximately 30 neurons.

Common to all analysed models is a relatively high Rent exponent. Only
at big partition sizes, the increase in connections per partition slows down, es-
pecially in the displaced connection model. Main reason for the high routing
complexity is the random, unstructured connectivity at single connection level.
While this connectivity reduces the complexity of the model description and is
a reasonable assumption when fine-grained connectivity data is not feasible [11],
it results in r → 1. This may not be a problem for present sizes of models (up
to 10000 neurons), but could become critical if the models are scaled up by a
few orders of magnitude. Interestingly, the network of C. elegans also has a rel-
atively high Rent exponent. One reason for this may be that this brain network
is very small compared to e.g. mammalian brains, making connectivity a weaker
constraint than functional and other constraints.

5 Conclusion

In this paper, we used Rent’s Rule to analyse the routing complexity of neural
network models. We found Rent exponents near to 1 (≥ 0.9) for most of the
analysed models, which corresponds to a high routing complexity. Especially,
such Rent exponents are much higher than would result from networks with
constant connection density in a two- (r = 0.5) or three- (r = 0.67) dimensional
substrate. Thus, most models scale poorly in such an environment. Some models
showed a lower routing complexity at higher connection levels, which reflects the
structure in the connectivity at system level.

Our results pose several questions for future modeling: Can present spik-
ing neural network models be scaled up without violating the connectivity con-
straints imposed by the brain as a three-dimensional substrate? Are there several
fundamentally different connectivity levels in the brain or does the brain employ
self-similarity at different network levels? Does biology decrease neuron density
in bigger-size mammalian brains to allow for higher connection complexity than
could be integrated in three dimensions (see Fig. 1)? Answering these questions
will help in understanding the structure and the design constraints of biological
neural networks as well as support their large-scale distributed simulation and
implementation in neuromorphic hardware.
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