ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Machine Learning with Labeled and Unlabeled
Data

Tijl De Bie®, Thiago Turchetti Maia®? and Antonio Padua Braga'

1- Federal University of Minas Gerais, Brazil
2 - Vetta Innovation; Federal University of Minas Gerais, Brazil
3 - University of Bristol, UK

Abstract.  The field of semi-supervised learning has been expanding
rapidly in the past few years, with a sheer increase in the number of
related publications. In this paper we present the SSL problem in contrast
with supervised and unsupervised learning. In addition, we propose a
taxonomy with which we categorize many existing approaches described
in the literature based on their underlying framework, data representation,
and algorithmic class.

1 Introduction

Machine learning has traditionally been divided in Unsupervised Learning (UL)
on the one hand, and Supervised Learning (SL) on the other hand. In UL,
which is sometimes referred to as exploratory data analysis, a set of data points
is given, and the task is to discern any structure present in the data set. No
label information about the data points is given to assist in or supervise this
task. In SL, in contrast, for each data point in a training set a label is given,
and inductive inference is used to infer a predictive relation between data points
and the associated labels.

In this paper we provide a brief overview of the many existing approaches to
the new field of Semi-Supervised learning (SSL). We start by comparing SSL to
both SL and UL. We then propose a taxonomy to categorize different approaches
based on three fundamental characteristics: underlying framework, data repre-
sentation, and algorithmic class.

In this paper we also map the contributions to the ESANN 2009 special
session on SSL to the proposed taxonomy. All SSL references in this paper are
summarized in Table 1, along with their respective categorization according to
each taxonomic characteristic.

2 Semi-Supervised Learning

Many SSL approaches have evolved from SL, UL, or both. The next two sections
describe the SSL problem in contrast with its SL and UL ancestors.
2.1 Semi-Supervised Learning as a variant of Supervised Learning

In general, an inductive model can be described by the elements presented in
Figure 1. The data generator (DG) selects random samples x € X, drawn
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independently from an unknown but fixed probability distribution function F'(x).
An oracle (O) returns a label y € Y to every input sample x with respect to
an unknown but fixed conditional distribution function F(y|x). For inductive
inference to be applied, a so-called training set I'; is assumed to be available:

Fl:{(leyl)a"w(xfayl)}v (1)

with all pairs (x;,y;) drawn i.i.d. by DG from the joint distribution F'(x,y) =
F(x)F(y]x).

A third component is the evaluator (E), which is capable of implementing any
function f, from the set F = {f, : X — Y|a € A}, where A is an arbitrary set
of parameters that governs the behaviour of the function. Finally, the learning
machine (LM) uses the training sample I'; to select one particular function
fao € F, e.g. using ideas from empirical risk minimization or related approaches.

Once the machine is trained, the value oy € A is determined and the function
fao can be implemented by E. For well-designed function classes F, LM’s, and
loss functions, the risk is small with high probability [2], where the risk is defined
as the expected loss incurred by the selected function f,, in predicting the label
of an input point x sampled from F(x). Then f,, may be used to estimate
unknown values ¢* at arbitrary points x* of an unlabeled test set T',,.
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Fig. 1: Learning model based on inductive inference, where a function that best
approximates the unknown functional dependence is selected from the set of all
possible functions based on the given training data.

SL relies on the assumption that the data point/label pairs in the labeled
data set I'; and in the unlabeled data set I', are sampled i.i.d. from the joint
distribution [3], so that a single set of parameters «g, induced from T, is likely
to also fit the test set well. From the function approximation point of view, the
generator function is assumed to be stationary and I'; representative. This allows
the estimation of joint densities F'(x,y) and the construction of discriminative
and regressive models represented by f,,. The induction of a general (rule)
hyper-surface based on the assumptions of stationarity and representativeness
are the basic principles of supervised inductive learning.

The focus has long been on problems where the training set I'; is sufficiently
large for inductive inference to yield suitably accurate results. However, in the
last decade, problems arising from areas such as Bioinformatics and the Internet,
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where the unlabeled data I', is abundant and the labeled data I'; relatively
expensive and therefore limited, called for different approaches to be developed.

Indeed, in practice there is often a relatively small labeled training set I'; =
{(xi,y:)}, and a relatively much larger unlabeled data set I', = {x;}{_;.
Certainly, the induction principle still holds under its standard assumptions,
and standard inductive inference could be applied to I';. However, this would
imply that any information contained in I';, is neglected. For example, I';, may
reveal structural properties of the data distribution F(x).

In some cases, the standard i.i.d. assumption underlying inductive inference
may also be invalid. For example, the data points in I'; may not be representative
of the marginal distribution F(x) in many cases, including where labels are more
easily obtained for specific subsets of the data space X.

Also more radical departures from the inductive learning assumptions have
become more common in practice. For example, it may be that the data points in
I'; and T, are not randomly sampled, but are simply deterministic sets (e.g. the
set of all genes in the genome). This setting has been studied from a statistical
learning theory perspective in [4]. Then the problem of predicting the labels for
the input data in the unlabeled data set ', is generally known as the problem
of transduction [2, 5, 6, 7, 8, 9, 1].

2.2 Semi-Supervised Learning as a variant of Unsupervised Learning

So far, we have motivated SSL from the inductive inference or SL perspective,
and more specifically from the classification perspective where ) is a finite set.
Semi-supervised learning is then regarded as an adaptation of classification, to al-
low it to take into account unlabeled data as well. Alternatively, semi-supervised
learning may be interpreted as a variation of clustering (or of unsupervised learn-
ing in general), where labeled data I'; is provided in addition to an unlabeled
data set I';, to aid the clustering process. Methods motivated in this way are
sometimes referred to as semi-supervised clustering methods [10].

Many approaches to SSL have been developed starting from this perspective:
by taking an UL algorithm and adapting it so that it becomes able to exploit la-
beled information. This is usually achieved by minimizing a cluster cost function
in 'y, while imposing the labels provided in I'; as constraints. Here, the cluster
cost function typically quantifies factors such as the clusters’ incoherence, the
overlap between clusters, and the proximity of input data belonging to different
clusters.

3 Frameworks for SSL algorithm design

Existing SSL algorithms are based on different underlying frameworks. Some
are evolutions of other SL or UL methods, but there are also algorithms based
on different premises. The sections ahead discuss four common frameworks that
have been used in the literature as basis for SSL algorithm design.
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3.1 Metric learning

Many SSL approaches consist of two steps. In a first step, the data is embedded
in a new metric space, which could be as simple as a linear projection of the
original space up to a complex nonlinear embedding. In a subsequent step,
an existing method may be applied. This strategy has been attempted in a
variety of ways, including by means of kernel design strategies and by means of
dimensionality reduction techniques. The supervision by the labels available in
the training set may either guide the learning of the new metric or be used by
the subsequent algorithm in the second step.

Unsupervised metric learning. Unsupervised metric learning strategies attempt
to capture the information in the unlabeled part of the data by means of a form
of metric learning. The idea is that it may be possible to embed the data into
a new metric space in which any cluster structure in the data is magnified. To
this end, ideas from spectral clustering and latent semantic indexing have been
used in the literature. Then, in a second step, a standard SL approach may be
applied in the new metric space into which the data is embedded. Approaches
that may be associated to this category include [11] in this special session and
12, 13].

Supervised metric learning. A complementary approach adopted by some au-
thors is to supervise the metric learning process using the labeled part of the
data. This is done in such a way that same-labeled data points are embedded
close to each other, and differently labeled data points are at a large distance
from each other in the embedding. Then, in a second step, a standard UL ap-
proach may be applied in the new metric space into which the data is embedded.
This strategy has been developed in e.g. [14, 15, 16].

3.2 Unsupervised methods

Perhaps the most direct approach to developing SSL algorithms is the adaptation
of UL (clustering) methods to allow them to exploit the information in the
labeled part of the data. This may be done by imposing constraints on the
resulting clusters obtained by the algorithm. Such approaches could be called
semi-supervised clustering techniques.

Existing work along these lines included the adaptation of standard clustering
methods such as K-means clustering [17], as well as clustering approaches based
on graph cuts and their spectral and convex relaxations [18, 6, 19, 9].

3.3 Supervised methods

The same issue may also be approached from the other end: by adapting SL
methods to allow them to exploit information in the unlabeled part of the data.
Typically this is done by using the information the unlabeled data reveals about
the density of the data. For example, it may be desirable that a classification
boundary crosses regions of low density only. These regions could be found based
on the unlabeled data.
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The first algorithms developed along these lines were able to directly address
two-class problems only, e.g. [20, 5, 7, 21]. Many of these are adaptations of the
Support Vector Machine classifier, or in terms of the s-t graph mincut problem.
More recently, the spectrum of applications has expanded considerably beyond
binary classification, now including single and multi-class classification, ranking,
regression, and structured output prediction, see e.g. [22, 23, 24] and [25, 26, 27]
in this special session.

3.4 Model-based approaches

Supervised as well as unsupervised techniques may often be regarded in terms
of inference on probabilistic graphical models. Also, SSL methods can often
be interpreted as or be derived directly from these terms. The labels of the
unlabeled data are then typically regarded as unobserved variables. Such SSL
techniques often involve Expectation Maximization or Variational Inference.
An early example of such an approach is [28], where the data is modeled
by means of a Gaussian mixture model. In the SSL setting, only some of the
labels are given. The SL extreme where the labels of all data points are specified
corresponds to discriminant analysis, while the UL extreme with no labels given
corresponds to Gaussian mixture modeling (also known as fuzzy K-means). An-
other early example where this idea is used for text classification is [29]. More
recent approaches in this category include [30] and [31] in this special session.

4 Data representation

SSL techniques also vary depending on the representation of the data they use.
We now examine two common data representations.

4.1 Nodes in a graph

Often it is most convenient to specify similarities between data points, which are
typically positive real numbers. Such similarities may not be related directly to
distances or proximities. When that is the case, SSL problems are usually for-
malized in graph theoretic terms. The data points are then regarded as vertices
in a graph, and vertices are connected by edges weighted by the similarity score
of the data points. Examples of such approaches are [21, 18, 6, 32, 19, 9] and
[25] in this special session.

A graph representation is convenient as it allows one to rely on a large set of
existing algorithms, e.g. to compute graph cuts that are optimal under various
criteria (which amounts to partitioning the vertices and hence the data points).

4.2 Points in a vector space

Traditional machine learning and multivariate statistics approaches have more
often than not relied on vector space representations of the data points. Addi-
tionally, a large number of methods that rely on vector space representations of
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the data have been rephrased in kernel-based formulations. This allows one to
apply such methods to virtually any type of data, as long as a suitable kernel
function can be defined.

As expected, many SSL methods are based on either vector representations
of the data, or on implicit vector representations induced by a kernel function.
Examples include [20, 5, 17, 29, 15, 14, 7, 16, 28, 22, 8, 23, 33| and [27, 34, 26,
11, 31, 30] in this special session.

5 Algorithmic class

A crucial issue in the design of SSL algorithms is their computational efficiency.
Many formulations of SSL amount to combinatorial problems that cannot be
solved in polynomial time.

5.1 Exact algorithms

Ezponential-time. In some of the pioneer approaches such as [20], authors have
attempted to find exact solutions of NP-hard formulations of the SSL problem.
This inevitably limits the applicability of these methods to small-scale problems.
Nevertheless, these initial attempts have been crucial in paving the way for more
efficient algorithms and approximations.

Polynomial-time. Some formulations can be solved by means of polynomial-time
algorithms, such as [21] and [25] in this special session. While their fast running
times is a crucial advantage, it has been argued by some authors that some of
these approaches are less robust to certain situations that may occur in the SSL
setting (see e.g. [6]). Nevertheless, in certain circumstances their performance is
excellent, and the understanding of the applicability of these efficient strategies
remains an interesting open problem.

Metric learning based on spectral methods. SSL approaches relying on an initial
metric learning step can often be solved exactly using an eigenvalue decompo-
sition (i.e. a spectral method), e.g. [12, 16, 15, 13] and [11] in this special
session. While this is a strong advantage of approaches based on metric learn-
ing, it should be stressed that the metric learning step is typically only the first
of two steps, as explained above. It is unclear to what extent the decomposition
of the SSL problem into two steps affects the performance of SSL.

Metric learning based on convex optimization. Other approaches for metric learn-
ing rely on convex optimization (see e.g. [35]), and on Semidefinite Programming
(SDP) in particular. An early example is [14].

5.2 Relaxations

Certain combinatorial problems can be relaxed to problems that are much eas-
ier to solve. Often this is done by allowing the labels to have continuous values
rather than discrete class values. Then, after solving the relaxed problem for-
mulation, the continuous approximations of the labels need to be thresholded in
order to obtain the label predictions.
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Spectral relaxations. Probably the most well-known relaxation techniques trans-
form combinatorial optimization problems in eigenvalue (i.e. spectral) problems
(see e.g. [36]). Spectral relaxations have been used in SSL in a number of works,
including [18, 6, 19]. However, spectral relaxations, while fast, may be too loose
and hence too inaccurate in some cases.

Convex relazations. Often tighter convex relaxations can be obtained, which
can also be solved in polynomial time. SDP relaxations are the most com-
mon ones [35, 37, 38]. While relaxation techniques have been around for a
while (see e.g. [37] and the discussion of the max-cut problem), in SSL the
SDP relaxation approach was first adopted in [7] and later in [22, 8, 9], among
others. SDP relaxations seem particularly promising, as they approximate the
unrelaxed combinatorial problem remarkably well, while being solvable by off-
the-shelf polynomial-complexity interior point solvers. In practice, however, the
polynomial complexity still severely rises with the size of the problem, which
makes these approaches inadequate for larger problems. It remains an open
question whether further developments in convex optimization will eventually
make SDP-based methods for SSL amenable to large-scale problems.

5.3 Heuristic approaches

Lastly, well-designed heuristic approaches have been used in a variety of meth-
ods. We refer to them as heuristics since they are typically not guaranteed to
find the globally optimal solution. Nevertheless, they typically find a solution
that is sufficiently close to the optimum, while being more scalable than, for
instance, exact methods or methods based on SDP relaxations. Some examples
of such methods are based on probabilistic graphical models and also on the EM
algorithm or on variational inference, e.g. [17, 23] and [30] in this special session.
Other methods are based on techniques such as the Concave-Convex Procedure
[33], or on specially designed heuristics, e.g. [5] and [39] in this special session.

6 Conclusions

In recent years, the distinction between SL and UL has gradually faded. This
desirable trend contributes to the development of more accurate, more robust
methods and improves their applicability to practical scenarios where neither SL
nor UL extremes fit well.

In this paper we have attempted to give an overview and propose a taxonomy
for some of the existing approaches to SSL. While our list of references is by no
means exhaustive and the taxonomy proposed is by no means complete, we hope
this paper will help researchers new to this domain get a general understanding
of the diversity of approaches as well as the existing challenges in the field of
SSL.
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Table 1: In this Table we attempt to categorize existing approaches according
to the frameworks they rely on (Sec. 3), the representations of data they use
(Sec. 4), and their algorithmic class (Sec. 5). The different works are shown
grouped by framework.

Reference | Framework Representation | Algorithm Class
[20] | Supervised Vector Exact (exponential-time)
[27] | Supervised Vector Convex relaxation
[7] | Supervised Vector Convex relaxation
[8] | Supervised Vector Convex relaxation
[22] | Supervised Vector Convex relaxation
[34] | Supervised Vector Heuristic
[26] | Supervised Vector Heuristic
[23] | Supervised Vector Heuristic
[33] | Supervised Vector Heuristic
[5] | Supervised Vector Heuristic
[25] | Supervised Graph Exact (polynomial-time)
[21] | Supervised Graph Exact (polynomial-time)
[17] | Unsupervised Vector Heuristic
[6] | Unsupervised Graph Spectral relaxation
[19] | Unsupervised Graph Spectral relaxation
[18] | Unsupervised Graph Spectral relaxation
[9] | Unsupervised Graph Convex/spectral relaxation
[32] | Unsupervised Graph Convex relaxation
[11] | Metric learning | Vector Exact (spectral)
[12] | Metric learning | Vector Exact (spectral)
[16] | Metric learning | Vector Exact (spectral)
[15] | Metric learning | Vector Exact (spectral)
[13] | Metric learning | Vector Exact (spectral)
[14] | Metric learning | Vector Exact (convex)
[31] | Model-based Vector Heuristic
[39] | Model-based Vector Heuristic
[30] | Model-based Vector Heuristic (variational)
[29] | Model-based Vector Heuristic (EM)
[28] | Model-based Vector Heuristic (EM)
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