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Abstract. We discuss sparse support vector machines (SVMs) by select-
ing the linearly independent data in the empirical feature space. First we
select training data that maximally separate two classes in the empirical
feature space. As a selection criterion we use linear discriminant analysis
in the empirical feature space and select training data by forward selec-
tion. Then the SVM is trained in the empirical feature space spanned by
the selected training data. We evaluate our method by computer experi-
ments and show that our method can realize sparse SVMs with comparable
generalization performance with that of regular SVMs.

1 Introduction

Support vector machines (SVMs) are known to realize sparse solutions in that
only support vector are necessary to represent solutions. But for difficult clas-
sification problems, many training data become support vectors and sparsity
of solutions decreases. Thus there are many approaches to improve sparsity of
solutions.

Wang et al. [1] proposed selecting basis vectors by the orthogonal forward se-
lection. There are some approaches to realize sparse kernel expansion by forward
selection of basis vectors [2, 3, 4]. Based on the concept of the empirical feature
space [5], which is closely related to kernel expansion, in [6, 7] sparse (LS) SVMs
are developed restricting the dimension of the empirical feature space by the
Cholesky factorization. And in [8] a sparse LS SVM is realized by selecting data
that separate two-classes in the empirical feature space, in which separability is
evaluated by linear discriminant analysis (LDA). This idea of selecting data by
LDA is essentially the same with that used in [9].

In this paper based on [8], we realize sparse SVMs selecting the maximally
separating data by LDA. Namely, by forward selection we select training data
that maximally separate two classes in the empirical feature space. If the ma-
trix associated with LDA is singular, the newly added data sample does not
contribute to the class separation. Thus, we permanently delete it from the can-
didates of addition. We stop the addition of data when the objective function of
LDA does not increase more than the prescribed value. Then we train SVMs in
the empirical feature space spanned by the data selected by forward selection.
In this formulation, support vectors in the empirical feature space are expressed
by a linear combination of mapped, selected training data. Therefore, only the
selected data are necessary to form the solution of the SVM.
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In Section 2, we discuss sparse SVMs trained in the empirical feature space,
and in Section 3 we discuss forward selection of independent variables based on
LDA. In Section 4, we evaluate the validity of the proposed method by computer
experiments.

2 Sparse Support Vector Machines

Let the M training data pairs be (x1, y1), . . . , (xM , yM ), where xi and yi are the
m-dimensional input vector and the associated class label, and yi = 1 and −1
if xi belongs to Classes 1 and 2, respectively. Assume that we have N (≤ M)
training data xi1 , . . . ,xiN that are linearly independent in the empirical feature
space, where xij ∈ {x1, . . . ,xM} and j = 1, . . . , N . We map the input space
into the empirical feature space by

h(x) = (H(xi1 ,x), . . . , H(xiN ,x))T , (1)

where H(x,x′) is a kernel.
Since the empirical feature space is finite, we can train the SVM either in

the primal or dual form but since we can use the same training method as that
of the regular SVM, we train the L1 SVM in the dual form as follows:

maximize Q(α) =
M∑
i=1

αi − 1
2

M∑
i,j=1

αiαjyiyjhT (xi)h(xj) (2)

subject to
M∑
i=1

yiαi = 0, 0 ≤ αi ≤ C for i = 1, ...,M. (3)

The decision function in the empirical feature space is

D(x) = vT h(x) + b = vT (H(xi1 ,x), ...,H(xiN ,x))T + b, (4)

where v is a constant vector. The difference of the SVMs in the feature space
and the empirical feature space is whether we use H(x,x′) or hT (x)h(x′).

In this formulation, xi with αi (> 0) for the solution of (2) and (3) do not
constitute support vectors since they are not used in expressing the decision
function given by (4). Rather we need only the selected linearly independent
training data and they are support vectors in the empirical feature space. By
a small number of linearly independent data we obtain sparse SVMs. If the
dimension of the empirical feature space is considerably smaller than the number
of support vectors in the feature space, faster training is possible.

3 Selecting Independent Data by Forward Selection

3.1 Linear Discriminant Analysis in the Empirical Feature Space

In this section we discuss LDA that is used for forward selection. To make
notations simpler, we redefine the training data: Let the sets of m-dimensional

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



data belonging to class i (i = 1, 2) be {xi
1, . . . ,xi

Mi
}, where Mi is the number

of data belonging to Class i. Now we find the N -dimensional vector w in which
the two classes are separated maximally in the direction of w in the empirical
feature space.

The projection of h(x) on w is wT h(x)/‖w‖. In the following we assume
that ‖w‖ = 1. We find such w that maximizes the difference of the centers and
minimizes the variance of the projected data.

In LDA we maximize the following objective function:

J(w) =
d2

s2
=

wT QB w
wT QW w

, (5)

where d2 is the square difference of the centers of the projected data given by

d2 = wT QB w = wT (c1 − c2) (c1 − c2)T w. (6)

Here, QB is the between-class scatter matrix and ci are the centers of class i
data:

ci =
1

Mi

Mi∑
j=1

h(xi
j) for i = 1, 2. (7)

And s2 = wT QW w is the variance of the projected data and QW is the within-
class scatter matrix:

QW =
1
M

M∑
j=1

h(xj)h(xj)T − c cT , c =
1
M

M∑
j=1

h(xj) =
M1c1 + M2c2

M1 + M2
. (8)

If QW is positive definite, the optimum w, wopt, is given by

wopt = Q−1
W (c1 − c2). (9)

We substitute (9) into (5) and obtain

J(wopt) = (c1 − c2)T wopt. (10)

3.2 Forward Selection

Starting from an empty set we add one datum at a time that maximizes (5) if
the datum is added. Let the set of selected data indices be Sk and the set of
remaining data indices be T k, where k denotes that k data points are selected.
Initially S0 = φ and T 0 = {1, . . . , M}. Let Sk

j denote that xj (j ∈ T k) is tem-
porarily added to Sk. Let hk,j(x) be the mapping function with xj temporarily
added to the selected data with indices in Sk:

hk,j(x) = (H(xi1 ,x), . . . , H(xik
,x),H(xj ,x))T , (11)
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where Sk = {i1, . . . , ik}. And let Jk,j
opt be the optimum value of the objective

function with the mapping function hk,j(x). Then we calculate

jopt = argj Jk,j
opt for j ∈ T k (12)

and if the addition of xjopt results in a sufficient increase in the objective function:
(
J

k,jopt
opt − Jk

opt

)
/J

k,jopt
opt ≥ η, (13)

where η is a positive parameter, we increment k by 1 and add jopt to Sk and
delete it from T k. If the above equation does not hold we stop forward selection.

If the addition of a data sample results in the singularity of Qk,j
w , where Qk,j

w

is the within-class scatter matrix evaluated using the data with Sk,j indices,
the data sample does not give useful information in addition to the already
selected data. If xj causes the singularity of Qk,j

w , later addition will always
cause singularity of the matrix. Namely, we can delete j from T k permanently.

The procedure of independent data selection is as follows.

1. Set S0 = φ, T 0 = {1, . . . , M}, and k = 0. Calculate jopt given by (12) and
set S1 = {jopt}, T 1 = T 0 − {jopt}, and k = 1.

2. If for some j ∈ T k, Qk,j
w is singular, permanently delete j from T k and

calculate jopt given by (12). If (13) is satisfied, go to Step 3. Otherwise
terminate the algorithm.

3. Set Sk+1 = Sk ∪ {jopt} and T k+1 = T k −{jopt}. Increment k by 1 and go
to Step2.

If we keep the Cholesky factorization of Qk
w, the Cholesky factorization of

Qk,j
w can be done incrementally; namely, using the factorization of Qk

w, the
factorization of Qk,j

w is obtained by calculating the (k+1)st diagonal element and
column elements. This accelerates the calculation of the inverse of the within-
class scatter matrix. Or we can use the matrix inversion lemma. According
to numerical experiments there was not much difference in computation time
between the two methods.

We call thus trained SVM sparse SVM by forward selection, SSVM (L) for
short and the sparse SVM by Cholesky factorization in [7] SSVM (C).

4 Experimental Results

We compared the generalization ability of SSVMs (L), SSVM (C), and regular
SVMs using two-class problems [10].

In all studies, we normalized the input ranges into [0, 1] and used RBF
kernels. We determined the values of C and γ for RBF kernels, and η and C for
sparse SVMs by fivefold cross-validation using the first five training data sets;
the value of C was selected from among {1, 10, 50, 100, 500, 1,000, 2,000, 3,000,
5,000, 8,000, 10,000, 50,000, 100,000}, the value of γ from among {0.1, 0.5, 1,
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5, 10, 15}, and the value of η from among {0.001, 0.0001} for SSVM (L) and
from among {0.5, 0.1, 10−2, 10−3, 10−4, 10−5} for SSVM (C). We determined
the optimal values of γ and C for SVMs and using the same value of γ we
determined the values of η and C for sparse SVMs by cross-validation. Table 1
shows the determined parameter values.

Table 1: Parameter values
Data L1 SVM SSVM (C) SSVM (L)

C γ C η C η
Banana 100 15 5,000 0.1 8,000 10−3

B. cancer 500 0.1 100,000 10−5 1,000 10−4

Diabetes 3,000 0.1 100,000 10−3 10,000 10−4

F. solar 10 0.5 50 0.1 10 10−3

German 50 0.1 2,000 10−3 3,000 10−3

Heart 50 0.1 500 10−3 3,000 10−4

Image 500 15 10,000 10−3 100,000 10−3

Ringnorm 1 15 1 0.1 1 10−3

Splice 100,000 10 10 0.1 1 10−3

Thyroid 100 15 100 10−2 500 10−3

Titanic 50 0.5 10 10−3 10 10−4

Twonorm 1 0.5 100 10−3 10 10−3

Waveform 1 10 1 0.1 1 10−3

Table 2 shows the recognition rates and their standard deviations of the test
data sets. The three methods show the comparable recognition rates, although
in some cases, the proposed method shows slightly inferior results.

Table 2: Recognition rates of the test data
Data L1 SVM SSVM (C) SSVM (L)
Banana 89.3±0.52 89.1±0.60 89.1±0.60
B. cancer 72.4±4.7 72.0±5.3 71.3±4.5
Diabetes 76.3±1.8 75.8±1.7 75.6±2.0
F. solar 67.6±1.7 67.6±1.7 67.4±1.7
German 76.2±2.3 76.0±2.3 76.2±2.3
Heart 83.7±3.4 83.1±3.4 83.4±3.4
Image 97.3±0.41 96.1±0.74 96.2±0.59
Ringnorm 97.8±0.30 98.1±0.19 98.2±0.22
Splice 89.2±0.71 88.8±0.79 84.5±0.70
Thyroid 96.1±2.1 96.1±2.1 95.7±1.9
Titanic 77.5±0.55 77.4±0.47 77.4±0.49
Twonorm 97.6±0.14 97.4±0.19 96.9±0.36
Waveform 90.0±0.44 89.4±1.0 89.5±0.43

Table 3 shows the number of support vectors and training time for the deter-
mined parameter values. We measured the time using a 2.6 GHz personal com-
puter with 2 GB memory. Compared to SVMs, except for the thyroid problem
the number of support vectors of the proposed method is drastically decreased
and compared to SSVM (C), except for the two problems, the number of support
vectors is smaller. But training time is sometimes much longer.
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Table 3: The number of support vectors and training time (s)
Data L1 SVM SSVM (C) SSVM (L)

SVs Time SVs Time SVs Time
Banana 101±10 0.3 17.3±1.2 1.1 22.9±8.9 9.66
B. cancer 124±11 0.5 64.4±1.9 0.4 10.9±1.4 1.4
Diabetes 255±12 1.9 9.9±0.74 4.6 7.0±0.66 6.7
F. solar 530±14 27 8.3±0.62 20 12.1±3.1 32
German 398±6.1 6.1 35.1±1.5 17 13.1±2.2 49.1
Heart 73.9±5.6 0.08 25.3±1.2 0.10 13.6±1.4 1.09
Image 151±8.0 1.0 385±9.7 23 66.2±7.7 1515
Ringnorm 130±5.5 2.0 214±9.3 2.1 32.2±24 52
Splice 741±14 27 968±5.8 20 241±9.0 14830
Thyroid 14.1±2.0 0.04 42.8±2.3 0.03 27.1±5.0 1.42
Titanic 139±10 0.2 8.5±1.0 0.1 6.4±0.74 0.4
Twonorm 255±8.0 1.5 67.7±5.0 1.1 7.6±1.0 9.0
Waveform 153±8.9 0.6 132±6.4 1.6 112±24 356

5 Conclusions

In this paper we proposed sparse SVMs by forward selection of independent data
based on linear discriminant analysis in the empirical feature space. Namely, we
select training data that maximally separate two classes in the empirical feature
space. Then we train the SVM in the empirical feature space. For most of
the two-class problems tested, sparsity of the solutions was increased drastically
compared to regular SVMs and was better than the method using the Cholesky
factorization.
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