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Abstract. The statistical physics analysis of offline learning is applied to
cost function based learning vector quantization (LVQ) schemes. Typical
learning behavior is obtained from a model with data drawn from high
dimensional Gaussian mixtures and a system of two or three competing
prototypes. The analytic approach becomes exact in the limit of high
training temperature. We study two cost function related LVQ algorithms
and the influence of an appropriate weight decay. In our findings, learning
from mistakes (LFM) achieves poor generalization ability, while a limiting
case of generalized LVQ (GLVQ), termed LVQ+/-, displays much better
performance with a properly chosen weight decay.

1 Introduction

Learning Vector Quantization (LVQ) and other prototype based classification
methods have been successfully applied in various fields, e.g. data mining, med-
ical image analysis and speech recognition, see [6] for an extensive bibliography.

In many LVQ schemes, the goal of good generalization behavior is aimed at by
minimizing a cost function which is expected to yield low error rates. Such cost
functions can be inspired by the concept of large margins as in, e.g., Generalized
LVQ (GLVQ) [7] or relate to explicit assumptions about the statistics of data,
for instance Robust Soft LVQ (RSLVQ) [8]. While these cost functions may
appear plausible, their relation with the generalization ability remains unclear.

Methods from statistical physics allow to investigate equilibrium properties of
large systems, such as neural networks [9, 10]. In the by now standard analysis
of off-line (batch) learning, training is interpreted as stochastic minimization
of a cost function. Here, our analysis is based on the limit of high training
temperature, a simplification that has given insights into many learning scenarios
[3, 9, 10, 11].

In this paper, we analyze two important LVQ schemes: a limiting case of
GLVQ and Learning From Mistakes (LFM) in systems of two and three com-
peting prototypes. Both learning schemes have been studied as on-line learning
in [2], which are based on a sequence of single example data. Here we explic-
itly treat off-line learning from a given fixed data set. In addition we study
weight decay as a control parameter against instabilities. Our analysis shows
how successful learning depends on the size of the training set. In particular,
the learning process exhibits phase transitions which influence the learning pro-
cess, reminiscent of those observed in unsupervised VQ [11] or multilayer neural
networks [1, 3, 9]. These findings provide useful insights into the behavior of
general off-line VQ schemes.

535



ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

2 Model Data

Consider a data set of P examples given as ID = {(£",0") € RN x{+1,-1}}_,.
We exploit the thermodynamic limit N — oo and assume that the number of
examples also grows linearly in N, i.e. P « N. Examples are generated inde-

pendently according to a given model density, a mixture of two Gaussians:

P(§) = ¥y pn P(€]m) with P(€]m) = -be exp [~ (6~ B,)* /2] (1)

where the prior weights satisfy p; +p— = 1. The cluster centers are given by
(B, and /B_, where / is a separation parameter and B,, are orthonormal with
B,, - B,, = d,un. Densities of the above form have been studied previously in
the context of supervised and unsupervised learning, see e.g. [2, 4, 5, 12]. Note
that the highly overlapping clusters separate only in the subspace spanned by
the By. Random two-dim. projections do not display any separation, see [2].

3 Cost functions

We consider a system of K prototype vectors W = {(wy, cx) }H<_ . Cost functions

considered here are expressed as empirical averages H(W) = ij:l e(W,e")/P.
We study the following specific examples:

o LVQ+/- with e(W,¢&")=d — df.
We restrict the analysis to the Euclidean distance d}, = (wy — &€")%. The
prototype wg is the closest correctly labeled prototype, while wr is the
closest incorrectly labeled prototype. This is similar to the LVQ 2.1 pre-
scription which selects data from a window about the decision bound-
ary. Here we study the limit of infinite window size. GLVQ [7] with
e(W,&") = @ [(d — df)/(d's + di)] reduces to the above for N — oo and
®(x) = 2. Note that for N — oo the term & = O(N) dominates d's — d
yielding a constant prefactor, while it cancels out in the numerator d'g — df..

e LFM with e(W,¢&") = (d —df)Oe(ds —df).
The prototypes wg and wp are defined as in LVQ+/- and O(x) is the
Heaviside function. Here only misclassified data contribute to the cost
reminiscent of perceptron training [4, 10]. We refer to this as learning
from mistakes (LFM).

4 Equilibrium Physics Approach

In the statistical physics analysis of off-line learning, [9, 10], training is inter-
preted as the stochastic minimization of H(W) where a temperature parame-
ter T controls the degree of randomness. This leads to a well-defined thermal
equilibrium: a configuration W occurs with a probability given by the Gibbs
density P(W) = exp[-SH(W)]/Z where Z = [du(W) exp[—5H(W)].
Here 8 = 1/T, the normalization Z is called the partition sum, and the measure
dp(W) is the NK-dim. volume element. Thermal averages (.) over P(W) can
be evaluated as derivatives of the so-called free energy —1In Z/f.
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Note that the above is defined for one specific data set. In order to obtain
typical properties of the model scenario, an additional average over all ID of the
same size and statistical properties is performed. It yields the so-called quenched
free energy — (InZ) , /B [4, 9, 10]. In general, the computation of (In Z), re-
quires involved techniques from the theory of disordered systems [9]. Here we
resort to the simplifying limit of high temperatures, 5 — 0, which has given
valid insight into a variety of learning scenarios [4, 9, 10]. Non-trivial results can
only be expected if the increased noise is compensated for by a large number of
examples P = aN/(. Because large training sets sample the model density very
well, H(W) can be replaced by P (e),, i.e. the average over P(§). In the limit
N — o0, (e) ¢ can be expressed as a function of very few order parameters

Rij = W; - Bj and Qij = W; - Wj. (2)

Note that R;; are the projections of prototype vectors w; on the center vectors
B, and @;; correspond to the self- and cross- overlaps of the prototype vectors.
Here (2) defines 2K + K (K + 1)/2 order parameters for K prototypes, see [12]
for the result and details of the calculation. It can be performed analytically
for systems with two prototypes but involves numerical Gaussian integrals for
K > 3. We rewrite (In Z)p as an integral over the order parameters:

(nZ)p =In in’deij [Li j<;dQij exp (—N [& (e)e — s ({RiﬁQij})} ) - (3)

Here, the entropy s gives the phase space volume of a particular order parameter
configuration [10]. In the limit N — oo the free energy (3) is dominated by the
maximum integrand, i.e. the minimum of f({R;;, Qi;}) = a(e) —s ({Rij, Qij})-
Hence, given a specific cost function and training set size a, we obtain typi-
cal equilibrium properties by minimizing the free energy function f({R;;,Qi;})
with respect to the order parameters. Also, the generalization error e,(W) =
[ deP(€) Zi(:ck;ﬁo H{;k O(d) —dj), can be expressed in terms of {R;j, Qs;} [12].

5 Results

We first present the result for a system with two prototypes for LFM. Minimiz-
ing the free energy function f, the equilibrium configuration is found at finite
{R;j(a),Qij(a)}. Although LFM appears reasonable, it exhibits surprisingly
poor generalization ability compared to the best linear decision boundary, dis-
played in Fig. 1. The non-monotonic behavior wrt. & indicates that this cost
function is not well suited to this particular training task. For highly unbalanced
priors, €, even exceeds the trivial value min{p;,p_}.

Meanwhile, the LVQ+/- system always exhibits divergent behavior. For un-
equal priors, only the trivial minimum f = —oo exists, with infinite length of
the prototype representing the weaker class, i.e. Qgr — 00. To avoid this known
problem, we choose the regularization method by punishing configurations with
large lengths using an additional energy called weight decay [1]. We place the ori-
gin of the weight decay at the center of mass, {(p4 B+ +p_B_), and preserve the
symmetry axis. In practice, this is equivalent to transforming the data into zero
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Generalization error vs o.

Fig. 1: Left panel: €, vs a for LEM. The achieved error rate are displayed for
K =2 (K = 3) with solid (chain) lines. The dashed (dotted) lines mark the
optimal errors using two (three) prototypes. Right panel: €, vs weight decay
A for IVQ+/- with K = 2 for & = 1,4 and 10 (solid lines, top to bottom).
The performance approaches the best linear decision boundary (dotted lines) as
a — oo with proper settings of A. For both figures, p; = 0.8 and ¢ = 1.

mean and calculating the weight decay wrt. the transformed origin. Hence we ob-
. . . P K

tain the modified cost function H =37 _ e+ AP >3 [wr—£(p+ By +p_B_))%

The free energy function to be minimized becomes

FURij, Qi 1) =G (€)e+aN Y1) (Quk — 2 (p4 R +p—Ri-)) =5 ({Ri, Qis}) . (4)

The performance of LVQ+/- is improved with proper settings of A, displayed
in Fig. 1 (right). At settings with small A, the prototypes have very large lengths,
which is not the desired result of training. Conversely, large A places greater
importance of the weight decay at the expense of higher generalization error.
The optimal X is fairly robust wrt. the size of the training set.

The behavior described above differs from that of unsupervised vector quan-
tization in [11]. In the latter, permutations between prototypes lead to effects
of retarded learning, i.e. a minimum number of examples is required to have
any chance of successful learning, see e.g. [3, 5]. Meanwhile in the supervised
learning scenario here, the permutation symmetry between prototypes is broken
by the class assignment of each prototype. Therefore, as long as « is in the order
O(1), each prototype already aligns itself towards its respective class mean.

The learning behavior is qualitatively different for systems with three proto-
types. Possible permutations between two prototypes of the same class, e.g. wy
and wy, produce two distinct states, illustrated in Fig. 2 (left). In the first state,
these prototypes have equal lengths, and lie symmetrically around ¢{(By —B_).
All three prototypes form a wedge-shaped decision boundary which allows for
better generalization ability, in general. For symmetrical reasons, we can rep-
resent this state with a configuration with Ry, = Rim,Vm and Qgr = Q. In
the second state, the prototypes have unequal lengths and lie asymmetrically
along /(B4 —B_). The decision boundary is predominantly defined by only two
prototypes. Here the prototype with the larger length can diverge, thus weight
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Fig. 2: Left panel: Two distinct configurations of a K = 3 system with two sim-
ilarly labeled prototypes ¢x = {+,+, —}. Middle panel: Vector lengths Qyy, for
LFM with K = 3,p; = 0.8 The system undergoes a continuous phase transition
at @ ~ 2.5. Right panel: ¢; vs. py with K = 3, & — oo and optimal settings
of X\ using LVQ+/- (solid lines) and LFM (dashed lines). The optimal error for
three prototypes is displayed with dotted lines.

decay is necessary.

In the three-prototype LFM system with weight decay, a continuous phase
transition occurs at a critical number of examples @., see Fig. 2 (middle). For
settings of small A and small &, we find the asymmetric configuration. At a.,
the system switches to the symmetric configuration. The configurations are
illustrated by the second and first configuration in Fig. 2 (left), respectively.
This translates into a non-differentiable kink in the learning curve. In general,
the performance of LFM does not improve with weight decay. Also note that
additional degrees of freedom and larger entropy of the three prototype system
must be compensated for by using a larger number of examples to perform better
than the two-prototype system.

Finally, we investigate LVQ+/- for three prototype systems. Due to larger
repulsion from the stronger class, LVQ+/- requires larger A than LFM to prevent
divergence. With this decay, the asymmetric configuration is unfavorable in
terms of free energy and therefore no such states are found. Consequently, in
these model settings, the above mentioned phase transition is not observed in
the learning process.

Note that while various performances of one specific cost function can be
analyzed, comparison between two different cost functions is difficult in the high
temperature limit. Any multipliers of H(W) are rescaled into f — 0 and,
consequently, the scale of & is not consistently defined between different cost
functions except at the limit @ — oo. In this limit, LVQ+/- outperforms LFM
given a properly chosen weight decay, as shown in the right panel of Fig. 2.

6 Discussion

We have investigated LVQ systems for two important cost functions: LFM and
LVQ+/-. The analysis is performed along the lines of the statistical physics
treatment of off-line learning using the limit of high training temperatures. We

539



ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

expect the results from the analysis to carry over qualitatively to learning at low
temperatures, similar to previous studies of supervised learning, e.g. [3, 9].

While LFM appears plausible, its performance is unexpectedly poor com-
pared to the optimum achievable error for this learning problem. The achieved
generalization error does not improve even with very large training sets. Mean-
while as expected, LVQ+/- displays divergent behavior and requires modifica-
tions such as a weight decay. Given properly chosen weight decay, LVQ+/-
exhibits better generalization ability than LFM for both two- and three proto-
type systems.

In three prototype systems, we find continuous phase transitions between
prototype configurations. While any practical algorithm should give better per-
formance with larger data sets, a critical size of the training set is required to
effectively utilize all available prototypes. Treatment of systems with more pro-
totypes can lead to existence of other phase transitions, e.g. as found in [3, 11].

In future projects we will rigorously study and compare various cost function
based LVQ algorithms including general forms of GLVQ and modifications such
as window schemes. Also, non-trivial behavior of the system wrt. to weight decay
settings was observed in this work and will be investigated. Finally, the analysis
at finite temperatures allows independent variation of the number of examples
P/N and T. This analysis is highly important for practical applications, e.g.
simulated annealing schemes which ends with low temperatures.
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