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Abstract. Learning with preferences is receiving more and more atten-
tion in the last few years. The goal in this setting is to learn based on
qualitative or quantitative declared preferences between objects of a do-
main. In this paper we give a survey of a recent framework for supervised
learning based on preference optimization. In fact, many of the broad set
of supervised tasks can all be seen as particular instances of this prefer-
ence based framework. They include simple binary classification, (single
or multi) label multiclass classification, ranking problems, and (ordinal)
regression, just to name a few. We show that the proposed general prefer-
ence learning model (GPLM), which is based on a large-margin principled
approach, gives a flexible way to codify cost functions for all the above
problems as sets of linear preferences. Examples of how the proposed
framework has been effectively used to address a variety of real-world ap-
plications are reported clearly showing the flexibility and effectiveness of
the approach.

1 Introduction

Supervised learning is probably the most commonly used learning paradigm and
a large spectrum of learning algorithms have been devised for this task in the
last decades. The need for such large spectrum of learning algorithms is, in
part, due to the many real-world learning problems which are characterized by
heterogeneous tasks and problem-specific learning algorithms for their solution.
These include classification and regression problems (including multi-label and
multi-class classification, and multivariate regression), as well as ranking-based
(either label or instance ranking) and ordinal regression problems. The standard
approach followed to cope with these complex problems is to map them into a
series of simpler, well-known settings and then to combine the resulting predic-
tions. Often, however, these solutions lack a principled theory and/or require
too much computational resources to be practical for real-world applications.

In this paper we review a general framework encompassing all these super-
vised learning settings, and we show that many supervised learning problems
can actually be modeled through a set of order preferences over the predictions
of the learner. This is done by considering both the different type of predictions
and type of supervision involved in the problem to be solved. Specifically, four
characterizing problem dimensions are taken into account, namely, the type of
prediction which is expected, the feedback that the supervision provides, the
hypothesis space used in the learning process, and the evaluation function which
determines how to measure the accuracy of a learning device.
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From a practical point of view, we show how all these supervised tasks can be
addressed by basically solving a linear binary problem on an augmented space,
thus allowing the exploitation of very simple optimization procedures available
for the binary case. We also stress the flexibility of the preference model which
allows a user to optimize the parameters on the basis of a proper evaluation
function. In fact, while in general the goal of a problem in terms of its evalu-
ation function is clear, a crucial issue in the design of a learning algorithm is
how to get a theoretical guarantee that the defined learning procedure actually
minimizes the target cost function. One advantage of the framework reviewed in
this paper is that it defines a very natural and uniform way to devise and code
a cost function into a learning algorithm. Examples of real-world applications
are then discussed by giving a quick overview of a range of problems already
successfully addressed by the framework.

In Section 2, we review the general preference learning model (GPLM).
Specifically, we show how the preference model generalizes the supervised learn-
ing setting by considering supervision as a partial order of (soft) constraints over
the learner predictions. In addition, we show (Section 2.1) how the suggested
generalization can be instantiated to well-known supervised learning problems.
In the same section, we also discuss a linear model for the learner (Section 2.3)
and issues about evaluation (Section 2.2). Quite general optimization procedures
for training models within the proposed framework are also presented (Section
2.4). In Section 3, different application scenarios are described and briefly dis-
cussed. Related work on ranking and preference optimization are reported in
Section 4. Finally, in Section 5 conclusions are drawn.

2 Supervised Learning by preferences

As a very general domain of a learning task we consider a space X of objects
(or instances) and a space Y of classes (or labels). For example, this can be the
domain of a recommender system where instances may correspond to customers
and labels to products.

In our general preference learning model (GPLM) we want to learn the pa-
rameters of a real valued relevance (or scoring) function defined on instance label
pairs

u: X xyY—R

which should approximate the actual target function. In a recommender system
task, for example, this target function would represent the actual rating, a real
value, a customer would give to a given product.

We can easily note that, when such a scoring function is given, a predictor
is able to rank instances in X basing on their relevance when fixed any label
y € YV, and similarly, to rank labels in )} basing on their relevance when fixed
any instance x € X.
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2.1 Prediction and Supervision

In this section, we show that by using the setting given above, it is possible to
classify several supervised learning tasks in a taxonomy on the basis of their
type of prediction and supervision.

2.1.1 Label and Instance Rankings as Qualitative Preferences

A first important family of supervised learning tasks is related to the ordering
of the labels, on the basis of their relevance for an instance, and thus they can
be characterized by the fact that predictions are based on a full order over the
labels. This family of problems is here referred to as label rankings.

Different problems have been studied which can be considered in this class.
The interesting thing is that these problems differ only on the type of feedback it
is possible to obtain as supervision. For example, in the so called category ranking
problem, the type of supervision is a full order over the set of labels. Similarly,
in a bipartite category ranking problem, it is required to predict full orders in
which a group of labels is ranked over the remaining labels, and the feedback will
correspond to partial rankings of length two. In this family of problems also fall
any g-label classification problem, and the feedback will correspond to partial
rankings of length two but where the first group of labels has cardinality exactly
equal to g. Note in passing that the well known single-label classification problem
is a trivial subcase where ¢ = 1 and the goal is to select the most relevant label
for an instance.

Another interesting family of tasks is instance rankings where the goal is to
order instances on the basis of the relevance of a given label. The duality with
respect to label rankings is self-evident and, for brevity, this subject will not be
discussed further. However, in principle, a different problem setting exists for
each one of the label ranking problems.

The two families of tasks above can be considered qualitative tasks since they
are concerned with order relations between instance-class pairs. On the other
side, quantitative tasks are the ones which are more concerned with the absolute
values of the relevance of instance-class pairs.

2.1.2  Prediction of Ratings as Quantitative Preferences

Sometimes there is the need to do quantitative predictions about data at hand.
The easier case is in binary classification where one has to decide about the
membership of an instance to a class as opposed to rank instances by relevance.
These settings are in fact not directly subsumed by the settings presented above.
As we will see, this can be overcome by adding a set of threshold values which
help on these different types of predictions.

We consider the most general case where instances are ranked according to
an ordinal scale which is here referred to as (multivariate) ordinal regression
task. In a recommender system application, for example, there is the need to
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predict people ratings on unseen items. Considering a movie-related application,
for example, suitable ranks for movies could be given as 'bad’, ’fair’, 'good’, and
'recommended’. With no loss in generality, we can consider the target space as
the integer set Z = {0,..., R — 1} of R available ranks. Following an approach
similar to the one in [1], ranks can be made corresponding to intervals of the real
line. Specifically, a set of thresholds 7 = {79 = —o0,71,...,TR—1,7TR = 00}
can be defined and the prediction based on the rule

z = arg{u(x,y) € (1i-1,7)}

Given the target rank z € Z, a predictor will be correct when the following con-
ditions hold: u(x,y) > 7; when ¢ < z and u(x,y) < 7; when i > 2. Note that, in
principle, a different threshold set could be used for different labels. The multi-
label classification, where it is required to classify instances with a subset (the
cardinality of which is not specified) of the available labels, corresponds to the
same problem as above with only two ranks, relevant and irrelevant (Z = {0, 1}).
Finally, we have the well-known (univariate) ordinal regression task [2, 3] which
is a trivial subcase of the multivariate setting with a single label, and the binary
classification task which is a univariate ordinal regression with only two ranks.
Note that binary classification is considered here conceptually different from the
above-mentioned single-label classification with only two classes.

Clearly, the taxonomy presented above is not exhaustive but well highlights
how many different kinds of structured predictions can be seen as constraints or
preferences in conjunctive form where each basic preference is defined over the
scoring values and/or a set of threshold values. In particular, we can differentiate
between two types of order preferences: qualitative preferences in the form

(Xia yr) > (Xj7 ys)

telling that the value of u(x;,y,) should be higher than the value of u(x;,¥ys),
and quantitative preferences in the form

(x,y)>Tor 7> (x,y), TET

relating the value of u(x,y) to a given threshold 7 from a set 7.

In Table 1, a summary of the set of preferences obtained for the most general
supervised learning settings are presented. Particular instantiations to more
specific problems are immediate.

2.2 Evaluation and cost functions

We have seen how supervision of typical supervised learning problems can be
decomposed in terms of set of qualitative and/or quantitative preferences over
the scoring function of a learner. Here, we show that preferences also gives
us a flexible way to express cost functions which can be utilized to evaluate a
learner. Specifically, we consider preference graphs, i.e. directed graphs where
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Setting Supervision
LR {(X7 y7) > (X? ys)}(x7y7v)ts(x7ys)
IR (%) > (%5, ) F i) =5 (x1.9)
MOR {(X, y) > Ti}i<z ) {Ti > (Xa y)}lZz

Table 1: Supervision of problems in Section 2.1. Label and instance rankings
(LR and IR respectively), have a preference for each order relation induced by
the supervision S. In ordinal regression (MOR), a preference is associated to
each threshold and z € Z is the rank given by the supervision.

nodes take values on the set H = (X x Y) U7 and edges (hi,h2) € H x H
represent preferences hy > hy. We say that a scoring function is consistent with
a preference graph whenever it is consistent with all the preferences in the graph.
The evaluation of any scoring function can then be performed by checking for
how many graphs the scoring function is not consistent with.

Even more general cost functions can be obtained by associating weights to
the edges of a graph. In this case, let g a preference graph, the cost suffered by
an hypothesis is defined as the maximum of costs of its unfulfilled preferences.
Finally, the total cost suffered by a scoring function u for the supervision .5,
given as a set of preference graphs G, is defined as the cumulative cost over all
the preference graphs. More formally, we have

c(Glu) = Z c(glu) and c(glu) = max{y(A\)|A € g not fulfilled by u}. (1)
geG

and y(\) represents the weight associated to the preference A.

Using cost mappings as defined above, we are able to reproduce many of the
different cost functions used for ranking problems. The reader can see [4, 5] for
several examples on how to give a cost map on standard supervised problems.

2.3 A Linear Model for the Scoring Function

In this work, we focus on a simple form of the relevance function, that is

u(x,y) =w- d(x,y)

where ¢(x,y) € R? is a joint representation of instance-class pairs and w € R?
is a weight vector [6]. Note that this form generalizes the more standard form
u(x,y) = wy - ¢(x) where different weight vectors are associated to different
labels. In fact, let |Y| = m, we can write:

w = (wi,...,wy) and ¢(x,y) = (0,...,0,¢(x),0,...,0).
y—1

With this assumption, it is possible to conveniently reformulate an order con-
straint as a linear constraint. Let 7 = {71,...,7r—1} be the available set of
thresholds, in the qualitative case, given A = (x4, y,) > (X;, ys), we obtain
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w(xi, Yr) > (x4, Ys) < (0,71, .., Tr-1) - (&(Xi, Yr) — &(%X5,9s),0,...,0) >0

Viceversa, in the quantitative case, given 6 € {—1,+1}, we have

S(u(x,y) — 1) >0 (w,T1,...,Tr—1) - (0¢(%,¥),0,...,0,—4,0,...,0) > 0.
——

r—1 R—r—1

P(A)

In general, we can see that supervision constraints of all the above-mentioned
problems, can be reduced to sets of linear preferences of the form w - ¥(A) > 0
where w = (w, 71, ...,7r—1) is the vector of weights augmented with the set of
available thresholds and t(\) is an opportune representation of the preference
under consideration. The quantity

(W) = w - (N)

will be also referred to as the margin of the hypothesis w.r.t. the preference.
Note that this value is greater than zero when the preference is satisfied and less
than zero otherwise.

Summarizing, all the problems defined in the taxonomy in Section 2.1 can
be reduced to an homogeneous linear problem in a opportune augmented space.
Specifically, any algorithm for linear classification (e.g. perceptron or linear
programming) can be used to solve it, provided the problem has a solution.

2.4 Learning with Preferences

In earlier sections we have discussed the structure behind the supervision and
how it can be modelled using preference graphs. Now, we see how to give learning
algorithms which are able to optimize the associated cost functions.

Specifically, the purpose of a GPLM based algorithm will be to minimize costs
¢(G|w) on a set of preference graphs as in Eq. (1). As these are not continuous
w.r.t. the parameter vector w, they can be approximated by introducing a
continuous non-increasing loss function [ : R — RT approximating the indicator
function. The (approximate) cost will be then defined by

AGIw) = 3 maxy()I(p(Alw)).

geG

Examples of losses one can use are presented in Table 2.

The goal in batch learning is to find the parameters w such to minimize the
expected cost over D, the actual distribution according to which we obtain the
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Methods I(p)
Perceptron | max(0, —p)
(B-margin max(0, 8 — p)
Exponential | e™?

Sigmoidal (1 + eMp=0))—T

Table 2: Approximation losses as a function of the margin. 8 > 0,A > 0,0 € R
are external parameters.

supervision feedback. Let G be a function which maps any supervision S into
an opportune set of preference graphs, then the expected cost will be

Ry[w] = Es~plc(G(5)[w)].

Although D is unknown, we can still try to minimize this expected cost by
exploiting the same structure of supervision and as much of the information we
can gather from a given training set S. A general learning scheme can be given
as in the following:

e Given a set V(S) = Jgcg G(9) of preference graphs

e Find a set of parameters w in such a way to minimize the functional
Q(w) = R(w) + pnL(V(S)|w) (2)

where L(V(S)|w) = > g €(G(S)|w) is related to the empirical cost and
R(w) is a regularization term over the set of parameters. Note that, for the
solution to be admissible when multiple thresholds are used and there are
constraints defined over their values (as in the ordinal regression settings),
these constraints should be explicitly enforced.

The use of a regularization term in problems of this type has different motiva-
tions, including the theory on regularization networks (see e.g. [7]). Moreover,
we can see that by choosing a convex loss function and a convex regularization
term (let say the quadratic term R(w) = 1||w]||?) it warranties the convexity of
the functional Q(w) in Eq. 2 and then the uniqueness of the solution. Indeed,
current kernel-based approaches defined for basic supervised learning tasks can
be seen in this form when using the S-margin with 8 = 1. This suggests a new
universal kernel method which is able to solve many complex learning tasks [8].

3 GPLM Applications

In this section, we briefly discuss recent works we have done which are related
to the preference learning framework presented in this paper.

The first application of the preference learning model to a label ranking
problem was presented in [9]. The proposed kernel method is able to optimize
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any conjunctive set of label-based preferences, thus being suitable to any label-
ranking problem. Moreover, a method is proposed to optimize the embedding
of instances and a coding matrix for the set of labels simultaneously.

In [5] there is a comparison of different cost mappings and loss functions
for the ordinal regression problem in an on-line setting. The setting on-line
and the huge size of data, have motivated a stochastic version of the general
algorithm we presented in Section 2.4 for the batch setting. Quite interestingly,
experiments have shown that using loss functions which nicely approximate the
true evaluation function (0-1 loss function), like the sigmoidal loss for example,
gave far better results w.r.t. hinge loss and similar.

In [10] there is an application of the model to an interactive classification con-
text. In such contexts, differently from autonomous Text Categorization (TC)
systems [11], the system, rather than taking a final categorization decision, is
required to support a human expert who is in charge of taking this decision.
A real-world application that perfectly fits in this scenario is patent classifica-
tion [12, 13, 14], where experts at international patent offices are presented with
patent applications that they need to classify against a large set of classes of
existing patents, in order to check the novelty of the proposed invention. A
system that ranks the available classes in terms of their estimated suitability to
the document to be classified is extremely useful to these experts since they can
thus concentrate on the top-ranked categories, pretty much as a Web searcher
concentrates on the top-ranked documents returned by a search engine following
a query. Clearly, providing supervision in the form of rankings is more onerous
than providing a crisp membership value to a document (i.e. being relevant or
irrelevant); Then, a mapping which uses membership information to generate
subsumed ranking preferences, is used. For example, we can consider a prefer-
ence like ¢, >4 ¢s (category ¢, is preferred to category c¢s for the document d)
whenever d belongs to ¢, and d does not belong to ¢;. Experimental compar-
ison between GPLM and standard SVM has been performed showing a large
improvement w.r.t. the precision at recall ranking evaluation measure on the
Reuters-21578 benchmark dataset.

In [15] there is an application to a job candidate selection task. In this
task, for filling a job role, one or more candidates have to be selected from a
pool of candidates. Assume that the & > 1 most suited candidate for the job
are selected. This decision is taken by looking at each candidate professional
profile. Moreover, we may assume that the number k of candidates to select is
already known from the beginning. This last point is very important to model
the problem. In fact, a candidate will be selected on the basis of which other
candidates are in the pool. In other words, no decisions can be taken for a
candidate without knowing who else is competing for the same position(s). The
training set consists of past decisions about promotions to a given role. It follows
that this problem can be cast as an k-instance ranking problem.

Finally, in [16] an application to patent classification is proposed. Categories
have to be associated to patents according to a three-layered structure (primary,
secondary, non-category). A preference model ad hoc for this problem has been
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proposed improving on different baseline strategies.

4 Related Work

Some efforts have been made in the past to give general algorithms for label
ranking tasks. In [17] the authors showed that different label ranking problems
can be cast as a linear problem which is solvable by a perceptron in an augmented
feature space. In [4] the authors proposed a setting in which a label ranking
problem was mapped into a set of preference graphs and a convex optimization
problem is defined to solve it. More recently, in [6] a large margin method to solve
single-label problems with structured output has been proposed. This approach
does not seem directly applicable to solve label ranking tasks as it would require
an optimization problem with a different constraint for each possible (label)
ranking. Far less has been done aiming at generalizing quantitative supervised
problems and our framework wanted to fill this gap.

Concerning preference optimization, different paradigms have been studied
in the past. Basically, they can be classified in two main families.

In a first family, which is the one our approach belongs, a ranking or wutility
model f(z) is learned which is supposed to respect as much as possible the
preferences defined on its values. As another example of an approach in this
family is [19], another method to solve general label ranking problems using
Gaussian processes. Based on this work, in [21] the same approach is combined
with multi-task learning.

In a second family of approaches, namely, the pairwise preference model, one
tries to directly model the pairwise preferences. In this last approach a function
f(z1,22) € [0,1] is learned which represents whether z; is to prefer to z3. One
drawback of pairwise preference models is that the resulting model could lack of
basic properties of a ranking function, for example the model could not respect
the transitive property of preferences. A typical method to cope with this kind of
ambiguities is to resort to voting strategies. In [18], for example, an interesting
framework for label ranking which exploits this idea is given. Using pairwise
preference models can require O(m?) evaluations where m is the number of
labels. A nice optimization to drastically reduce this complexity in a multi-label
classification task is proposed in [20].

5 Conclusions

We have discussed a general preference model for supervised learning and appli-
cations to complex prediction problems, as job selection and patent classification,
for example. The interesting aspect of the proposed preference model is that it
allows to codify cost functions as preferences and naturally plug them into the
same training algorithm. In this view, the role of the cost functions resembles
the role of kernels in kernel-machines. Moreover, the proposed method gives a
tool for comparing different algorithms and cost functions on a same learning
problem.
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