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Abstract. Considering coupled phase model oscillator systems with
non-identical time delays, we study the possibility of close-to-zero phase-
lag synchronization (ZPS) without frequency depression (FD). FD refers
to nearly vanishing frequencies of the synchronized oscillators (in com-
parison to the intrinsic frequencies); its absence is crucial for interpreta-
tions related to brain dynamics. Discussing an extension of the Kuramoto
model, it is demonstrated that ZPS without FD may arise by allowing for
dynamical parameters. Two models are presented: one is based on short-
term modulation of the delays, while the other assumes static delays but
short-term modulation of coupling strengths. We also speculate on possi-
ble relevance of such mechanisms with respect to assembly formation by
relating the frequency of the synchronized oscillation to recently proposed
pattern frequency bands.

1 Introduction

A surprising feature of brain dynamics, not yet understood, is the observation
that synchronization occurs with nearly zero phase-lag despite substantial time
delays; consider as illuminating examples the experiments with visuomotor inter-
gration task reported in [1] and [2, figure 2a]. The time delays result from delays
due to synaptic transmission, post-synaptic integration, onset of the neural spik-
ing, and transmission along the axon. As an indication for the size of delay times,
one may consider onset latencies; see the review in [3].

Here, an analog problem is discussed in the context of coupled phase model
oscillators. We demonstrate that allowing for short-term modulations of the
system parameters may establish close-to-zero phase-lag synchronization (ZPS)
without frequency depression (FD) (the meaning of FD gets obvious in the con-
text of example 3). It is important to model ZPS through a dynamics that avoids
FD, the reason being that the relevant rhythms in the brain are of relatively high
frequencies given by the so-called gamma range (see [1, 2]).

In section 2, two models are introduced (models I and II) that demonstrate
how ZPS without FD may be achieved if one allows for short-term modulations
of parameters. Examples may be found in section 3. Section 4 contains a short
discussion and an outlook.
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2 Synchronization of Phase Model Oscillators without
Phase-Lags and Frequency Depression

2.1 Zero phase-lag synchronization through modulated time delays

Model I assumes that some underlying mechanisms realize an adaption of time
delays such that the effective dynamics may be related to a system of the form

given by
do al
A=) = dwn + = D singm (0, 7(t), 1)
model T : dt m=1 (1)
dTnm —
Ar dt ) = f(@7m) ,
where the synchronizing terms with delays were abbreviated by
SNy (0, 7, 1) = sin(0,, (t — Tnm) — On(t)) - (2)

Each oscillator n, n = 1,..., N, is described in terms of the phase coordinate
0,,. The intrinsic frequencies are given by w,, A is a time-scale, the coupling
strength between the oscillators is given by K > 0, and the time delays are
given by N(N — 1) values for 7,,,,, > 0 (75, = 0). The A; is another time-scale
that should be chosen such that the modulations of the delays are short-term.

The @ is chosen to describe an average frequency, @ = (1/N) ZTNn:1 Wp; the
f(x) is chosen such that f(xg) = 0 and f'(z¢) < 0 if and only if zyp = 27N,
where N is integer. As an example, we consider f(0Tnm) = — sin(@7mm).

In the limit A, — oo, the delays are static and equation 1 reduces to the
Kuramoto model with time delays. Its dynamics is illustrated with examples 1
to 3 in section 3 (example 3 shows FD).

In case of A\, < oo, the dynamics of equation 1 implies ZPS without FD. This
may be understood by assuming that 7., = 27 Ny, /@, with N,,,,, some integer,
and realizing that the trajectories 6,, = Ot + ¢ + €, |en| < 1, n=1,..., N (that
is, ZPS without FD), where ¢ is an arbitrary phase shift, are consistent with
equation 1 (with K large enough). This argument is confirmed with example 4.

2.2 Zero phase-lag synchronization through modulated couplings

The following model, in contrast to the model of section 2.1, assumes that the
time-delays are static; it results from modifying the Kuramoto model by assum-
ing dynamical couplings that are modulated according to

d K
A—2(t) = dwp + — cos(Q(t) Tm ) Sinym (60, 7, )
model I : dt N mz::l (3)
Q)
Ty = o)+,
Ao o (t) (t)+w

where Aq > 0 is another time scale that is to be chosen small enough so that
the modulation of the coupling strength is short-term. In the limit A\q — 0,
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the 2 dynamics could be eliminated from equation 3 after replacing ! — @ in
the phase dynamics equation. We do, however, keep the dynamics of 2 in order
to model the modulation starting from non-modulated couplings, that is, with
example 5 we start from Q(0) = 0, giving cos(2(0)7m) = 1.

The reason why equations 3 may imply ZPS without FD is less obvious than
with equations 1. In the following, we can only give a sketch of the reasoning.
Consider a Kuramoto-like dynamics with a synchronizing term given by sin(6,, —
O + Q7Tpnr) (with time delays as in equation 2). On one hand, with 6,, = @t + ¢
(see section 2.1), this turns into sin(—oTm, +Q7my,) and a dynamics that implies
) — @ (as the one in equation 3) will let the sinus term approach zero. On the
other hand, using a trigonometric identity, we find that

sin(f,, — O + Q7)) = sin(Q7mn ) cos(0, — O + cos(Qrpy) sin(8, — 0,,) . (4)

It is then obvious that the phase dynamics of equation 3 is obtained from such
a Kuramoto-like model if the intrinsic frequencies are (dynamically) shifted to
eliminate the first term on the r.h.s. of equation 4. Given the fact that strong
enough couplings K allow for shifting the intrinsic frequencies without destroying
ZPS, it may then be understood that equation 3 implies ZPS (without FD, that
is, 0, =0t + ¢ + €, |en] € 1, for n =1,...,N) as long as the coupling strength
is strong enough to tolerate such shifts. The argued behavior of model II will be
demonstrated with example 5.

3 Examples

The following examples 1 to 5 are based on a network with N = 10 units
with intrinsic frequencies w,. The average value of these randomly distributed
frequencies, drawn from a distribution with mean & /27 = 40 Hz, is given by

- N
w 1
—=— E wp, =39 Hz (examples 1-5) ; (5)
2r 21N —

see figure 1A for an illustration of the corresponding time periods 27 /w,, with
27 /& ~ 26 ms.

Except for example 3, the coupling strength is chosen to be K = 2\&. (The
A may then be eliminated from equations 1 and 3.) The reason for this choice
is that it turns out to be sufficiently large to establish synchrony in case of
vanishing delays (example 1). Only example 3 uses another coupling strength,
Kirong = 2K, to illustrate the frequency depressing effect of stronger couplings
in case of the Kuramoto model with delays, that is, equation 1 with A, — oo
(this effect is not present in case of models I (A; < oo0) and II).

Examples 2 to 5 use non-vanishing time delays in a range between 20 and
100 ms; see the histogram of the randomly distributed time delays in figure
1B. These values may be compared to the time periods that correspond to the
intrinsic time periods of figure 1A. The comparison shows that the time delays
are substantial.
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Fig. 1: (a) The spectrum of intrinsic time periods given by 27 /w,, n =1,..., N.
(b) Histogram of the time delays 7., (n # m) (c) Example 4 (model I, where
time delays are dynamical with initial values given by the values that are illus-
trated with (b)): Histogram of 7,,,,,(f) at £ = 500 ms.

The examples use the same initial values and discretization is established
through the Euler approximation with discrete time step dt = 0.057.

Examples 1 to 3 illustrate the dynamics of the Kuramoto model, that is,
the phase dynamics without using modulations of time delays or couplings (the
Kuramoto model may be obtained from equation 1 as explained in section 2.1).
We find that ZPS is established only at the expense of using strong couplings and
allowing for FD; see figure 2A to C for examples 1 to 3, respectively. Example
4 (5) illustrates the dynamics of model I (II); see figure 2D (E). The results
demonstrate that models I and II allow to establish ZPS without FD.

4 Discussion and Outlook

It may be of interest to point to a possible relevance with respect to pattern
recognition and assembly formation as described in [5, 6]. There, patterns win
a competition for coherence by taking a coherent state of a particular frequency
(in a frequency band related to a pure pattern frequency [5]). Given such an
approach, the mechanisms discussed here may be relevant, because they establish
ZPS without FD for particular frequencies (given by @). Thus, these mechanisms
may serve to support the coherence of the winning patterns if the w, (and @)
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Fig. 2: (a-e) The dynamics of examples 1-5 is displayed by showing sin(6,(t)),
n=1.,N (N =10), fort =0 to ¢t = 500 ms. (a-c) Examples 1 to 3: These
demonstrate the dynamics of the Kuramoto model, that is, no modulations
of time delays or couplings are present. (a) Example 1: As a starting point,
the synchronizing behavior is illustrated in case of vanishing time delays. (b)
Example 2: In case of non-vanishing time delays, the ZPS may be destroyed
(the panel shows only n = 1,..,4). (c) Example 3: Frequency depression (FD).
Stronger couplings (here, K — Kgtrong = 2K) may realize ZPS at the expense
of implying FD (FD refers to the resulting low value of the common frequency,
it was first reported in the context of a two-dimensional lattice model [4]). (d)
Example 4 and (e) example 5: the dynamics, resulting from equations 1 and
3, respectively, is displayed. Both models show ZPS without FD. In case of
example 5 (model II), the corresponding modulation of 2 is shown in panel (f)
(the dotted line gives ).
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are made dynamical in the sense described in [5, 6]. This would relate the & to
pure pattern frequency bands of the winning patterns, while the other patterns
(with different frequencies) may be desynchronized or frequency-depressed.

Corresponding to the brain dynamics origin of the problem, the approach of
this paper, that is, to allow for dynamical parameters, may be reasonable, given
the brain’s capability of short-term modulations; see for example the review of
short-term synaptic plasticity in [7]. Due to space restrictions, a more detailed
study of the observed dynamics, as well as arguments for relating the mechanisms
to brain dynamics must be left to future presentations. Notice, a complementary
combination with another recent approach to enhancing ZPS given in [8] may be
possible. With respect to brain dynamics, the main lesson to be learned is that
some form of short-term modulations - not necessarily the ones presented here
- may account for the surprising ZPS without FD of long-range and therefore
strongly delayed connections between cortical units.
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